
A new Generation Object Model and Language
Andrea Guerrieri

Via Franco Bolognese, 2
40128 Bologna (BO) Italy

(+39) 340 3969748

aguerrieri82@gmail.com

ABSTRACT
Object-oriented programming is nowadays one of the most
familiar and widely used paradigms. As extensively argued
in the literature, inheritance, a key feature for code reuse,
fails in its aim. We impute this failure, to a basic
conceptual mistake in the “is a” relation. After showing the
weakness of some strategies to preserve expressiveness
using single inheritance, we propose an alternative model
based on services. This model helps to build an object-like
system that is modular, extensible and reusable by means of
essential, but powerful design structures. We also introduce
the S language, through which we can easily express the
service-oriented paradigm. Finally, we show how to
emulate S features in an existing OO language.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features; F.3.2 [Theory of Computation]: Semantics of
Programming Languages; D.1.5 [Programming
Techniques]: Object-oriented Programming;

General Term
Languages, Theory, Design

Keywords
Inheritance, Service-Oriented, ‘S, Components

1. INTRODUCTION
One of the most important aspects of OO, is the code reuse
capabilities associated with inheritance. However, in many
situations, inheritance alone is not enough. To overcome
these limitations, several techniques has been proposed in
the literature. Some, try to cover the extensibility problem,
the ability to modify an existing class hierarchy, even
without the original source code. Some other, the code
reuse problem, the ability to compose a class library,
combining elementary building blocks. On this side, are
placed components models, such as CORBA[14] or
COM[54], or new language-constructs, such as mixin[10]
and traits[15]. However, almost all of these solutions, do

not reject the concept of class inheritance, but instead, try
to improve it. One more not-negligible aspect of software
development is the portability, the ability to execute an
application in different platforms. An increasingly popular
solution are virtual machines / interpreters, sometimes
accompanied with a wide class framework. This cannot be
the answer to portability: system are different because
provide different things, in different manners, and a
software should be enabled to take advantage of the
peculiarity of one system over the other. To obtain a more
portable system, one way is to separate the “needs” (or
services) from their realization. Using the interfaces and
applying some design patterns, we are able to keep
separated this two aspects. However, to properly describe a
service-based system, we should use a language with a
built-in service semantic. This language is called ‘S, and it
will be gradually introduced in this paper.

1.1 Contributions
In section 2 will be illustrated as the inheritance, and
especially single inheritance, cannot represent the real
world, generating code duplication. We will impute its
failure, to a basic conceptual mistake of the “is a” relation,
that does not take in account of the subjectivity and
dynamicity. In section 3 will be shown some strategies built
over single inheritance, to maximize code reuse. In section
4 will be introduced the service model, as an alternative to
current object model. We will be explained how migrate
from a class-hierarchical system to a class-based
component system, on which the class concept goes into
the background, to leave space to the more abstract and
flexible idea of service. In section 5, will be presented an
overview on ‘S language, designed specifically to express
the service paradigm. Finally, after a more accurate
comparison with related works, we will show in section 7 a
possible translation of ‘S into an existing OO language, like
c#. This paper does not introduce any formalization,
however it can offer an intuitive idea, with a rich set of
example and sample code.

2. CLASSES
Through classes, we can enclose in a single structure all
objects having similar features: the presence of a particular
feature cause that an object belonging to a specific class.
The class establishes also the identity (or type) of the
object, through the “is a” relation. If a subset of objects of a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN’05 June 12–15, 2005, Location, State, Country.
Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

mailto:aguerrieri82@�

specific class has additional features (more specific), we
can define a new class (subclass) inheriting all features of
its superclass and including the new features.

2.1 Inheritance
Due to the well known and already discussed problems of
multiple inheritance (first of all, the diamond problem),
many of modern OO languages allows only single
inheritance. Example 2.1 shows a simple case evidencing
single inheritance failure:

Example 2.1 We have three class C1,C2,C3, and some
common feature f1,f2,f3. We want to define a class
hierarchy, thought which share duplicated features:

C1 = {f1, f2}; C2 = {f2, f3}; C3 = {f1, f3};

Moving f1 in a base class, would cause the duplication of
f2 in C2, because C2 has no common base with C1.

B1 = {f1}; C1 = {B1, f2}; C3 = {B1, f3}; C2 = {f2, f3}

Moving f2 in a base class, would cause duplication of f1 in
C3, and so on.

Conflicts like those arisen in Example 2.1, may occur
quite frequently modeling large class systems, a concrete
example is shown in Figure 1.

File
file system entry

stream

Directory
file system entry

list

SerialPort
device
stream

Printer
device

Array
list

Figure 1. Some samples classes and their features. Some
features are shared between unrelated classes, therefore is
not possible creates a feature-based hierarchy without
duplication.

2.2 Ambiguity on “is a” relation
Inheritance represent the “is a” relation, but for several
reasons “is a” cannot model reality. What an object is
cannot be established by a definition, because that is a
subjective and dynamic concept. Subjective, because
different points of view, different uses cases, may give to
the same object, different identities. Dynamic, because in
the future we might find a new way to use an existing
object. Additionally, the identity of an object may also
depend on its internal state. Regardless of the multiple
identity that an object can assume in real world, each
application affects only a limited portion of real, so an
hypothetical Rect class in math applications, can be also
different from a Rect class in graphical applications. Such

limitation, anyway, does not resolve the “multiple identity”
problem, as show in following cases:

2.2.1 Same object, different services
This occurs when an object exposes more services
belonging to different domains.

Example A bicycle is a vehicle, but at the same time, can
be used in a fitness club as an aerobic machine.

Example Physically, a serial port is an hardware
component, so must extend Device class. But from a
service point of view, a serial port is a Stream, that isn’t a
subclass of Device.

2.2.2 Same object, different views
This occurs when an object belonging to different classes in
different domains, therefore may exist multiple views of
same object. Similar analysis was advanced in [30]:

Example In e-commerce platform, a physical Printer may
be represented by a generic Item class, exposing only
attributes and methods useful for sale and delivery (price,
brand, weight). In the device driver development, the same
Printer can be represented by a Printer class, that may
extend Device class, exposing only attributes and methods
useful to print job (es. Print method)

2.2.3 Same object, multiple components:
This occurs when an object is an aggregate of independent
components / features, therefore each component may be
used as base class.

Example A mobile phone with embedded camera can be
viewed as a specialized Phone (phone with camera) or as a
specialized Camera (camera with phone). Anyway, is
possible to reuse only one of two components.

2.2.4 Different state, different class
This occurs when the object class changes according its
internal state.

Example Ellipse and circle are two different shape,
belonging to different class. But when both radius of ellipse
have same value, the ellipse turns into a circle.

3. LIMIT CODE DUPLICATION
Due to lack of single-inheritance systems, several technique
and pattern may be used to limit code duplication. In this
section are shown some examples, suitable mostly on static
and strongly-typed languages (such as java, and c#). Will
not be considered multiple inheritance, traits and mixin,
which will be discussed later. If reader is already familiar
with those techniques, can skip this section and move
directly to section 4.

3.1 Strong base class
Some features are joined together in a common base class,
and each different behavior controlled by attributes and
flags.

Example There are different kind of buttons, some that
differ from their aspect (es. textual, image, etc), some
others that differ from their behavior (es. toggle, push). We
can model the aspect with an attribute, and the behavior
with the specialization:

public class Button {
 protected ButtonType _type;

 protected void Paint() {
 switch (_type) {
 case ButtonType.Image:
 ...
 }
 }
}

public class ToggleButton : Button { ... }

Public class PushButton : Button { ... }

As a design rule, a parameter should be used only if: (a) the
underlying algorithm strictly depends to it or (b) parameter
is not constant and its value cannot be determinate design
time. If a function (or a class) have a different behavior,
with a different parameter values and domain is limited,
should be created a specific function (or a class) for each
value of domain. For example, in following function, the
format parameter defines the behavior:

string formatNumber(int value, string format) {
 if (format == “c”) return ...
 else if (format == “x”) return ...
}

therefore, would be better split formatNumber in two
distinct functions:

string formatCurrency(int value) { ... }

string formatHex(int value) { ... }

If the class capabilities depended on its internal state, the
type concept itself would fail, because what make two type
different is exactly what they can do. Even if sometimes,
some operations are not allowed with some states, the state
cannot change the nature the object. Besides the conceptual
problem, there are several disadvantage using this
approach:

Extensibility: All different behaviors, are hard-coded into a
single class, adding a new variant requires to have access to
source code.

Memory: Unnecessary memory allocation to maintaining
on state something that will remain constant for all object
lifetime.

Maintenance: The large concentration of different
behaviors on a single structure, make the source code
harder to understand and maintain.

Performance: Code runs slowly due to presence of
numerous flow control instructions, required to perform
different action with different state.

The C++ templates[18] with constant parameters, avoid
both memory and performance problems, because each
instance of a template with different parameters, generates
different code (and types), and in optimization stage all
constant variables / expressions / statements can be
removed . For example:

#define IMAGE 0

template <int TYPE>
class Button {
 protected: void Paint() {
 switch(TYPE) { ... }
 }
}

Button<IMAGE> button;

Conversely, use of templates requires the distribution of
source code.

3.2 Composition and aggregation
Some features shared across unrelated objects, are
implemented in separated classes. A class needing such
features, can include a reference to the component-class in
a private field, rather than inherit it. The host class can
choose to expose directly the component-class, or create
wrappers only for specifics methods. The situation
described in Example 2.2, can be modeled as follow:

Example SerialPort class can extend Device class, and
stream service can be implemented in a separated class
(SerialPortStream) extending Stream. SerialPort can
include an instance of SerialPortStream in a private field.

public class Stream { ... }
public class Device { ... }

public class SerialPortStream : Stream {
 public SerialPortStream(SerialPort sp) { ... }
}

public class SerialPort : Device {
 protected SerialPortStream _stream;

 public SerialPort() {
 _stream = new SerialPortStream(this);
 }

 public SerialPortStream Stream {

 get { return _stream; } }
 }
}

SerialPort port = new SerialPort();
port.Stream.Read(...);

It was possible to express a situation that single inheritance
couldn’t express without code duplication, but with
following disadvantage:

Accessibility: Generally the components need to access to
private member of host class, and vice-versa. Therefore,
many languages allow to invade private space of classes
(es. friend keyword in c++, internal keyword in c#),
breaking the block box concept on which object-
programming should be founded.

Memory: Each component is allocated in a separate
memory block, increasing the heap fragmentation.

Typeing: A component class is not a subtype of host class.
This makes composition weaker than inheritance.

3.2.1 Transparent composition
A class do not expose directly its components. All methods
provided by components that must be public, are re-
declared in host class. Host class methods, redirects the call
to associated component method, giving back the return
value to caller (aca delegation pattern [2])

public class SerialPort : Device {
 protected SerialPortStream _stream;

 public SerialPort() {
 _stream = new SerialPortStream(this);
 }

 public void Read() {
 _stream.Read();
 }
}

This allow to hide that some features are implemented by
external components, but subtyping problem still persist.

3.2.2 Transparent composition with interface
Classes and inheritance are used primarily as code reuse
blocks, almost all of the typing tasks are delegated to
interfaces.

Introducing IStream interface, both Stream and SerialPort
can implement IStream:

public interface IStream {
 void Read()
}

public class Stream : IStream { ... }
public class SerialPort : Device, IStream { ... }

3.3 Helper class
Each class provides a minimal set of features, any
additional features are implemented by helper classes. An
instance of helper class must be created each time is
required, usually passing the reference of target class on
constructor.

For example, The Stream class may expose only basic
functions (es. read a bytes block from current position), and
delegate to an helper classes all advanced tasks::

public class Stream {
 public void Read() { ... }
}

public class StreamReader {
 protected Stream _stream;

 public StreamReader(Stream stream) {
 _stream = stream;
 }

 public string ReadLine() { ... }
}

StreamReader reader;
reader = new StreamReader(new Stream());
reader.ReadLine();

Since there is a different helper class instance for each
target class, helper class can have own state.

3.3.1 Static methods
To avoid helper class creation, helper methods can be
static. For example:

public static class StreamReader {
 public static string ReadLine(Stream stream) {
 do_something_with_stream
 }
}

Stream stream = new Stream();
StreamReader.ReadLine(stream);

This allows to save memory and to have a quicker access to
helper functions, but static methods are in-fact equivalents
to functions inside a namespace. This can affect
encapsulation principle, since a behavior specific for a class
is outside the class boundaries itself. Additionally, there are
following limitation:

Overriding: Static methods doesn’t allow override: since
the helper classes can be also used by any subclass of target
class, could exist a specialized version specific for that
subclass.1

1 We can use method overloading to differentiate function

based on type. Unless we does not use a dynamic
dispatch

[13] it would fail, for example, when a reference
of type A holds an object that is subtype of A

State: Can be expensive keep state between different calls
on a multithread environment, if source language doesn’t
support local thread storage.

3.3.2 Conclusion
Helper classes can be used to add new class-features when
source code is not available, or to share functionality across
different classes. In cases where it can be applied, the use
of the composition is preferable. If more than one helper
class works at the same time in the same target class
unknown interactions between the helper and target class
may cause side effects.

Example In .net framework, text reading is separated from
binary reading, because text reading can be performed also
without streams (es, reading from a string). In such
situation, if we have a stream with hybrid content (es
HTTP), we must use different readers for different content
type. If text reader use an internal buffer, any read
operation may get more data than they have been requested,
exceeding the text content boundaries. If stream does not
allow to seek, when we switch to binary reader, some
contents could be lost.

4. SERVICE MODEL
The idea to build a class system, using elementary unit, that
can also works cross-cut to class hierarchy, is popular in
literature [44][30][53][28]. Even with different names, all
concern, features, and aspects, perform a kind of
decomposition, in order to (a) extend and control an
existing class system (b) to share the behaviors among
unrelated classes. We want to introduce simply another
way to obtain in, using the more intuitive concept of
service. Of course, the concept of service is not new. For
instance, such approach has been successful applied to
distributed systems, through the web services (aca SOA
[32]). In this circumstance, services has been used as a
strategy to interoperate between different platform. Even
some component oriented model uses a service-like
approach, one of that is COM[54].The most interesting
principle that we can found on COM, is the separation of
interface from implementation: a program ask and depend
on abstract interface, without cares about the concrete class
in which is implemented. More generally, this is known as
The Dependency Inversion Principle [38]. Implement a
system based on this principle, may requires several
infrastructural code, to obtain an high degree of flexibility,
and avoid code duplication. That is, because many
interface would be implemented in a very similar way, and
unless we use a multiple-inheritance-like (virtual
inheritance, traits, mixin, etc) language, a class can reuse
only the code pertains to one aspect. The key, is to leave
behind the old class-hierarchical approach, to adopt a more
effective service-oriented object model.

4.1 Introduction
We will introduce services, trying to give a definition of a
well-know real-world object: what is a table? Is that piece
of furniture? A car bonnet is a table? We can say that a
table is an object that can be used as a table, that is an
object able to provide a large and flat surface. This may
suggest that the identity of an object depends more to how
that object is used, rather than from its physical structure.
In real life, we are all able to readapt a procedure, also
using objects other than the original ones.

Example If we want to draw a straight line with a pencil,
and we do not have a ruler, we may use any object with a
straight and raised edge. The ruler is just one of many
possible objects that can provide that service, and not the
service itself. In different context, ruler may be simply a
measuring tool, or a piece of plastic. Additionally, you can
call 'ruler' any object that can assume that role at that time.

That is because we humans think “services”, associating to
a concrete object a particular behavior, and founding on
that behavior our processes. A frequent misunderstanding
that occurs in object-oriented model, is to exchange the
service-provider (class) for the service itself, therefore
programs, rather than depend on abstract “needs”, depends
on their implementation.

Example An application needs to write some logs. Initially
we choose to use directly an instance of FileStream, and
write logs calling its methods. Later we create a specific
Logger class to manage file open / close stuffs, exposing a
transparent log functionality.

Logger class is not the log service, is an entity (any of
possible) providing a log service. This distinction may
appear trivial to reader, but will mark the difference
between our model and existing object model. In summary,
any programming model that aim to represent objects, must
take in account following principles::

An object is an aggregate of elements, each of which
confers to it functions and attributes. Same elements may
be found even in different and unrelated objects. (b) An
object may provide one or more services, different objects
may provide same service, and same service may be
provided by different objects. (c) An object is often used
for what it does, and not for what it is. A process depends
on the service that a particular object can provide, and not
from the object itself. (d) Is always possible find a new
way to use an object, and an object can be used even
differently than its original purpose.
4.2 Features
We shown in 2.2, how the same object can assume different
identities. From now on, we will call each of that potential
identities, a feature of that object. More general, we can

define a feature as a capability of an object, a service that it
can provide, a behavior, that responds to the question “what
the object can do?”.

Definition 3.1 Feature f2 depends on a feature f1, if f2
cannot exist without f1. If feature f2 depends on feature f1
in one object, then f2 must depend on f1 in all object that
include f2

Definition 3.2 Feature f1 is independent from feature f2, if
exist at least on object that have f1 but not f2

Definition 3.3 An object with at least two features mutual
independent is called aggregate.

Rule 3.1 If two features are mutual dependant, then must
be grouped in a single feature.

Rule 3.2 If exist at least one object that use only a subset of
a feature, that part must be isolated in a distinct feature.

4.3 Migrating to services
Independently of the presence of different features, classes
expose a flat view of objects, hiding their composite
structure. In this section will explain how we can migrate
from a hierarchical class model to a service-based model.
The process consists of four steps: (1) features detection (2)
class decomposition (3) services extraction (4) class
composition

C1

C2

C4 C5

m4

m2

m3

m1

C3 m6

public member class

Figure 2. Sample class hierarchy

In next example, we will use following formalism:

𝐴𝐴 ≼ 𝐵𝐵 A is subclass of B

𝐴𝐴 = {𝐹𝐹1[𝑀𝑀1, . . ,𝑀𝑀𝑛𝑛], . . ,𝐹𝐹𝑛𝑛} A is class, F is a feature of
class A, M is a public
member belonging to F.

𝐴𝐴 → 𝐵𝐵 Feature A depends on
feature B

(𝐹𝐹1, . . ,𝐹𝐹𝑛𝑛) ⇒ 𝑆𝑆(𝐿𝐿1, . . , 𝐿𝐿𝑛𝑛) Feature 𝐹𝐹𝑛𝑛 on class-space is
translated into feature S on
feature-space, and labeled
as 𝐿𝐿𝑛𝑛

𝐴𝐴 ⊸ 𝐵𝐵 A is based on B

𝐿𝐿@𝑆𝑆 Feature S with label L, on
feature-space. Or service S
implemented by L in
service-space.

𝑆𝑆[𝐴𝐴1 ⊸ 𝐵𝐵1, . . ,𝐴𝐴𝑛𝑛 ⊸ 𝐵𝐵𝑛𝑛] Feature S with label 𝐴𝐴𝑛𝑛 is
based on Feature S with
label 𝐵𝐵𝑛𝑛 .

Features detection Each class is decomposed in its
primary features. Initially, we can simply associate to each
class a distinct feature. Figure 2 shows this class hierarchy:

𝐶𝐶2 ≼ 𝐶𝐶1; 𝐶𝐶2 ≼ 𝐶𝐶1; 𝐶𝐶4 ≼ 𝐶𝐶2; 𝐶𝐶5 ≼ 𝐶𝐶2
That can be initially decomposed in:

𝐶𝐶1 = {𝐹𝐹1[𝑚𝑚1,𝑚𝑚2,𝑚𝑚3]};𝐶𝐶2 = {𝐹𝐹2[𝑚𝑚4]};
𝐶𝐶3 = {𝐹𝐹3[𝑚𝑚6]}; 𝐶𝐶4 = {𝐹𝐹4};𝐶𝐶5 = {𝐹𝐹5}

Applying rule 3.2, some features may be split in more
parts. Supposing that C2 depended only on m1, C3
depended only on m2 and m3, and m1 used some private
members of C1, we are facing to three different features.
Renaming:

𝐶𝐶1 = {𝐹𝐹1[𝑚𝑚1],𝐹𝐹2,𝐹𝐹3[𝑚𝑚2,𝑚𝑚3]};𝐶𝐶2 = {𝐹𝐹5[𝑚𝑚4]};
𝐶𝐶3 = {𝐹𝐹4[𝑚𝑚6]}; 𝐶𝐶4 = {𝐹𝐹6};𝐶𝐶5 = {𝐹𝐹7}

After we have detect all features, we must find their
dependences. if a feature A, uses something of feature B,
than A depends on B. In our case:

𝐹𝐹1 → 𝐹𝐹2;𝐹𝐹5 → 𝐹𝐹1;𝐹𝐹6 → 𝐹𝐹5;𝐹𝐹7 → 𝐹𝐹5;𝐹𝐹4 → 𝐹𝐹3
Figure 3 shows the final result.

F1 F3F2

F5

F6 F7

m4

m2

m3

m1

F4 m6

a depend on b

Figure 3. Result of feature detection.

Class decomposition In this stage, classes are temporary
decomposed, every feature leaves the classes space, starting
an independent life. We are now in the feature space, a
kind of limbo between object-oriented-model and service-
oriented model. All features without any public members,
are grouped in a single namespace, and any relation of
dependence between features of the same namespace,
changed in “is based on”. That because, if a feature does
not adds nothing of new, means that simply is changing the
feature on which depends. In our example, only F6 and F7
are empty, and both depend on F5, therefore F5, F6, F7
must be grouped together:

𝐹𝐹1 ⇒ 𝑆𝑆2;𝐹𝐹2 ⇒ 𝑆𝑆1;𝐹𝐹3 ⇒ 𝑆𝑆4;𝐹𝐹4 ⇒ 𝑆𝑆5;
(𝐹𝐹5,𝐹𝐹6,𝐹𝐹7) ⇒ 𝑆𝑆3(𝐴𝐴,𝐵𝐵,𝐶𝐶)

And changing also all relations:
𝑆𝑆2 → 𝑆𝑆1; 𝑆𝑆3 → 𝑆𝑆2;𝑆𝑆5 → 𝑆𝑆4; 𝑆𝑆3[𝐵𝐵 ⊸ 𝐴𝐴,𝐶𝐶 ⊸ 𝐴𝐴]

A@S3

B@S3 C@S3

m2

m3
m1

S5 m6

S4

S1

S2

m4

a depend on b

a is basesd on b

Figure 4. Result of the class decomposition

Services extraction: this is the most important conceptual
step: all founded features with unique namespace, will form
the abstract services (only as interface definition). Each
labeled feature inside the same namespace, will be a
particular implementation of that service. Every
dependence relation must be reinterpreted. Generally, all
dependencies between features extracted from two related
classes, generate an interface (or conceptual) dependence.
Instead, all dependencies between features extracted from
the same class may generate an implementation (or
concrete) dependence2

Figure 5

. In our example S1, S2, S3, S4, S4,
will be the services. A, B, C three different implementation
of S3 service. The feature S1, S2, since are originated from
the same class, will be in a concrete dependence, all others
in a conceptual one. Final result is shown in

I3

I4 I5

m2

m3
m1

I6 m6

I5

I1

I2

m4

S1

S2

S3

S4

S5

Figure 5. Result of service extraction

Class composition: All service implementations extracted
from previous step, can be used as a buildings blocks to

2 This distinctions will be clarified in next paragraphs.

compose the new classes. The composition is valid only if
all dependences are satisfied. For example:

𝐶𝐶4 = {𝐼𝐼2@𝑆𝑆2[𝑚𝑚1], 𝐼𝐼4@𝑆𝑆3[𝑚𝑚4], 𝐼𝐼5@𝑆𝑆4[𝑚𝑚2,𝑚𝑚3]}
Class C4 is functionally identical to the old one, as is
shown Figure 6

m2

m3
I5 S4

m1 I1I2 S1S2

I4m4 S3

Figure 6. Equivalent of class C4 in service-model

In the service-oriented model, say that “service B depends
on the service A”, can mean:

(a) If You can do (a generic) B, you can also do (a
generic) A

(b) To do B (in that way), I need to use (a generic) A.
(a) establishes a conceptual dependence between services,
something that is always true, regardless of the
implementation. (b) establishes a concrete dependence,
something that is true only for a particular implementation.

Example “A list is enumerable”, this is conceptual and
always true. We can say that “the list service depends on
Enumerator service”, or to be more colloquial that “if you
act like a list, you must also act as an enumerator”.
“A list is sortable”, is not always true, some lists can be
read only, or contains element on which sorting cannot be
applied.

The point (b) can be also read as:
(b*) If you can do (a generic) A, you can also do B (in

that way)
We will define (b*) as “inversion of dependence”, the
ability of an object providing a service, to “inherit” all
services-implementation that depend on it.
In object-oriented model, inheritance does not take in
account this important distinction, with the result that each
conceptual dependence is reflected also in a concrete
dependence. Say that “B is a specialization of A”, does not
necessarily imply that both must implements shared
behavior in the same way. In fact, using virtual functions
and polymorphism, B can alter the behavior of A, but this
approach can generate code duplication3

3 A changes made overriding a superclass method, may be

suitable also for classes belonging to a different
inheritance axis

.

In conclusion, what today was “class B inherit from class
A” becomes “service B depends on (require) service A” or
“service B can be provided using A”

4.4 Service based design
To design a system in a service-based environment, is not
necessary to apply the procedure described in 4.3. We can
easy decompose our application domain answering to this
three questions:

1. What I need to do?

2. In which way I can obtain it?

3. Which entity can provide such service in that
way?

Answer (1) produce services, (2) service dependence and
implementation, (3) classes.

A conceptual service is represented by an interface, so we
can use the term interface in place of that one of service.
For each conceptual service, can exists many possible
control interface, and many way to implement each
interface.

Example a stream is an abstract service through which read
and write data. Interface IStream with methods Read and
Write is a way to control such service. FileStream is an
object that provide (implement) IStream service.

In object-oriented model, interfaces can be implemented
only inside a class, and a class can implement one or more
interfaces. Since the unit of reuse is the class, is not
possible to share an interface implementation between
classes belonging to different inheritance axis.
In the service-oriented model, a service implementations,
acts as building blocks, and the classes as a place (not the
only one) in which aggregating such blocks, so that same
implementations may be shared among different classes. As
constraint, a service implementation can be used inside a
class, only if target class provides also all the dependent
services4

A key feature of this model is that classes cannot inherit,
but simply acts as container on which services can be
realized and compounds.

 .

4.5 Composition samples
Figure 7 shows some composition schema, taking
advantage of service composition:
Schema I: (double implementation) B implement interface
I1. A implement I2. Class expose both I1 and I2.

4 This is not properly true, a more precise definition is

given in section 5

Schema II: (single local dependence) B implement
interface I1 and require interface I2. A implement I2, so
can satisfy B requirement. Class expose both I1 and I2.

Schema III: (private implementation) Similar to Schema
II, except that class doesn’t expose interface I2, that is used
only to satisfy B requirement.

Schema IV: (external dependence) Class C2 implement I1
by B, but B require interface I2. Class C1 implement I2 by
A. Class C1 is parent of C2, so can satisfy B requirement.

Schema V: (mutual local dependence) A implement I2 and
require I1. B implement I1 and require I2. Both
requirement can be satisfied each other. Class expose both
I1 and I2.

Schema VI: (shared requirement) C implement I3 and
require I2. B implement I1 and also require I2. A
implement I2, so can satisfy B and C requirement. Class
expose only I1 and I3.

Schema VII: (double local dependence) C implement I1. A
implement I2. B implement I3 and require both I2 and I1. C
and A can satisfy B requirement. Class expose all I1, I2 and
I3.

Schema VIII: (interface dependence) Interface I2 depends
on I1. A can implement only I2, creating an implicit
requirement on I1. A expose both I1 and I2, but I1 is
implemented through B provided by class C

Figure 7. Examples of service composition

C

C 1

B

A
I 2

I 1

B

A
I 2

I 1

B

A
I 2

I 1

C 2

B

A

I 2

I 1

B

A

I 2

I 1

B

A

I 2

I 1

C
I 3

A

I 2

I 1

B

A

I 2

I 1

C

I 3

Interface I 1 required

Interface I 2 required

Interface I 1

Interface I 2

Interface I 3

Implement
Require

Class
Implementation

Schema I Schema II Schema III

Schema IV Schema V Schema VI

Schema VII Schema VIII

B

5. “S” LANGAUAGE
This section is only an overview of ‘S language, showing
mainly its aims and purpose, without giving a formal or
rigorous definition. ‘S will be introduced in this paper, to
give to the reader a reference language to better understand
the service model potential. The first goal of ‘S design, is
the ability to compile a code that is fast, and with a low-
memory-usage, in order to be executed even in a embedded
system or a microcontroller. Some theoretical features
could be removed due their cost, but any decision can be
taken only after the analysis of the profiling results on real
world applications. Many features, statements and
constructs are inspired from existing languages (such as
c++, java, c#, and so on), therefore will be used without
giving any definition: only the ones that diverge from
status-quo will be explained and defined.

Implementation
Function

Event Handler
Property

Block

Class
Custom Context

Global

Interface

Base
Filter

Variable
Request

Function Decl.
Property Decl.

Event

A B

A contains B

Figure 8. Overview off principal language construct, and
their relations. The gray blocks defines also a context.

5.1 Hello world
An overview of the main ‘S constructs and their relations,
is shown in Figure 8. Nevertheless, we want to start
introducing ‘S, using the evergreen “hello world” sample:

require IModule

on IModule.load()
{
 require IConsole as c;
 c.WriteLine(“Hello world”);
}

By require statement, we are asking to the system for a
particulat service. All requests declared in global scope, are
resolved on program startup, and generally are directed to
those services consumed in several parts of the program.
IModule service is implemented by default from compiler,

and rapresent the program5

5.2 Type

. Subsequently, it was written an
event handler for Load event of IModule service. This event
will be raised by system, and can be considered in fact as
the entry point of the program. Inside the event handler,
was required the console service (IConsole), and using the
as clause, was specified an alias through which get access
to this service. Finally was invoked the WriteLine method
of the console service, in order to emit the string “hello
world”

Similar to c#, there are two main categories of types: value
types and reference types. A schema of all types categories
is shown in figure Figure 9

Object

Value Type

Reference
Type

Struct

Enum

Built-in type

int32
 float

...

Class

Interface

User-defined
Type

String

Figure 9. Summary of types defined in ‘S

Value types are always passed by value (deep copy), and
are usually stack allocated. To this category appertains
Primitive Types (int, bool, float, etc), struct, enum and
user-defined types. The only exception is for the string
type, that is considered a built-in type, but is passed by
reference.
Reference types, are always passed by reference (Shallow
copy), and are heap allocated. To this category appertains
classes and interfaces. Both the ‘reference passing’ and the
‘heap allocation’ they allow to a class type to be more
extensible than a value type, because its memory size may
be unknown at compilation time.6

5.3 Variable and Function

We can declare a variable in any point of program, using
keyword var. If a variable is initialized on declaration, the
type can be omitted (a), since it can be inferred from the
assignment expression.

var x : int32;
var y : int32 = 10;
var z = 10; (a)
var z1; //illegal
z = “text”; //illegal, z is an int32.

Also a function can be declared in any point of program,
even inside a function itself. In this release, a function does

5 By program we mean this particular module, because a

program can be composed using different modules.
6 This advantage make sense only using certain compilers

not define a type. A function can require input arguments,
and optionally can return a value. A function can be
overloaded, so can exists many function with same name,
but different arguments7

function ToHex(value : int32,
 digitCount : int32 = 8) : string
{ ... }
function Reboot() { ... }
var result1 = ToHex(10);
var result2 = ToHex(10, 4);

. An argument can be optional, and
in this case a default (constant) value must provided. All
arguments that follow an optional argument, must be
optional as well. A function must be called using
parenthesis, and passing all not-optional arguments,
separated from comma, in the same order on which they
appear into the function.

5.4 Interface
The central point of any program written in ‘S, are the
interfaces. An interface describes a service, and a class is
composed by service implementations.

public interface IStream {
 function Close():
}
public interface IInputStream : IStream { (a)
 property IsEof : bool;
 function Read(buffer : byte[],
 count : int32) : int32;
}
var x : IInputStream;
x. Close(); (b)

An interface can declare many prototypes of functions,
properties, and events. An interface can depend on more
interfaces (a). That means that the class8

assert IObject : IFormattable;

 in which interface
is implemented, must also implement all dependent
interfaces. Due to this constraint, is possible to have a
direct access to all members of dependent interfaces, as if
they were its own (b). if interface A depend B, and B
depend on C, then A depend on C. To create a conceptual
dependence for an already defined interface, is possible to
use assert statement:

The module that declare assertion, must provide an
implementation for all type that directly, or indirectly
implement involved interface.

7 With conditional function, we may have more than one

function with the same prototype, this we will explained
later.

8 The class is not the only one structure by witch implement
an interface

5.5 Base implementation
Is possible to share a full or s partial interface
implementation, using the base. A base is not a type, so
cannot be directly instantiated or referred.

public base BaseStream : IStream {
 var _closed : bool; (a)
 final function Support() {... } (b)
 public function Close() {
 if (!_closed)
 _closed = true;
 }
}
public base EnahncedStream : BaseStream { (c)
 public override function Close () { (d)
 Support(); (e)
 base.Close();
 }
}

A base can inherit from an existing base (c), and in this
case, all the well-known features of single inheritance are
available9. Is possible to declare any support function or
state (a)(b), however, those members will be accessible
only from the base, or from a base that inherits from it (e).
All the functions / properties can be overridden by default.
In order to override a function, the override modifier must
be specified (d). To disable this feature, the base class can
declare the member as final (b). If a support function is
declared as private, then it will be not accessible to its
superclass10

5.6 Class

. All interface members must be publics.
Similar to the implement statement, also the base statement
can implement only one interface. If this interface has
some dependences, it will be possible call and use such
member as if they were its own. The compiler will ensure
that all dependences will be always resolved.

The first place on which an interface can be implemented,
is a class. A class can implement multiple interfaces, and
for each interface, can select the base from which starting
from. The class must implement all member of each
interface that have not yet been implemented, and must also
implement all dependent interfaces.

public class File {
 public construct(name : string) { ... } (f)
 public implement IInputStream
 use BaseInputStram; (a)

 public implement IStream{
 public function Close () { ... }
 }
 public function Close() { ... } (b)
}

9 Inspired to that one of c#
10 Will be used the terms superclass / subclass improperly

referred to the base implementation hierarchy

var x : = new File(“foo.txt”); (g)
x.Close(); (c)
x.IInputStream.Close(); (d)
(x as IInputStream).Close(); (e)

All properties not explicitly implemented, will be auto-
implemented by compiler, by declaring a private variable
on which store / retrieve the state. If implement does not
declare any member, the block {} can be omitted (a). Is
possible to get access to an interface member in two way:
implicitly (c) as if it were a direct class member of the
class; explicitly (d), by specifying the interface name. A
public function that is declared into the class, has the
precedence on any interface members (b). In this case, or in
the case of ambiguous member access (similar prototype in
two distinct interface), is required an explicit access to
resolve the ambiguity (d). Implementing an interface as
protected, all members will be protected too, except those
explicitly declared as public. Same semantics for public
(all public except those declared as protected). A protected
member is accessible only explicitly. If all member of an
interface are protected, an explicit access to this interface
will be no more available. However, is still possible
execute a cast to that interface (e). An interface member
cannot be private, however, whole interface
implementation could be. A private interface will be never
accessible, even with a cast. If an interface is implemented
as private, also all interfaces that depend on it must be
private. A class can declare optionally a constructor using
constructor keyword (f). Is possible to create a class
instance, using new operator (g).

5.7 Context
The class is not the one place on which implement a
services. By implement statement, is possible to implement
a service in different places, called contexts. A context can
be defined as a place in which an interface can be
implemented and required. The class, is only a particular
kind of context, that can be “replicated” in multiple copies.

//global context
public implement ITextWriter use Console; (a)
public class Console {
 //class context
 public implement ITextWriter { ... } (e)
}
public function Foo() {
 //function context
 public implement ITextWriter { ... }
 Foo2(); (c)
}
public function Foo2 () {
 require ITextWriter; (d)
}
on IModule.load() {
 require ITextWriter; (f)
 Foo(); (b)
}

Above a summary of all defined contexts, that are global
(the space outside any defined structure), function, and
class.

Is very important understand the meaning of implement
statement. When is declared in global or function context,
is not simply a definition. More than define an interface
implementation, it define a rule, asserting that that service
must be implemented in that way. (a) must be read as “if
someone requires ITextWriter, uses Console class to
provide it”. The contexts form a stack, which has global as
its base. Every function call cause the related context to be
pushed into the stack, and then popped back when function
returns.

public context ConsoleContext { (a)
 public implement ITextWriter use Console; (b)
}
on IModule.load() {
 //global context
 enter ConsoleContext { (d)
 //UDC context
 require ITextWriter; (c)
 ITextWriter.WriteLine(“hello”);
 }
 //global context
}

By user defined context (a) (UDC), is possible to create a
set of configurable environments, on which declare the
default implementation (b) for a group of services. UDC
have a similar role of a singleton or static class, but
contrariwise, its content is not directly accessible. Prior to
use any service or variable declared into an UDC, you must
enter in such context. By enter (d) keyword is possible to
declare a code block that runs inside a specific context.
After entering, the old context is pushed into the stack, and
the specified UDC becomes the current one. That means
that any service request (c), until we are inside, will pass
through the UDC. There are no limit in nested enter call,
even if they affect the same context several times.

5.8 Require
By require keyword is possible to ask for an interface, in
any point of program. The required interface will be
accessible as any normal variable, with the same identifier
of the interface. Is possible to define an alias, using the as
keyword. A request is resolved once require instruction
enters in the scope, and not in the position in which is
declared. All requirements declared in the global context,
will be resolved once the module and all its dependences
has been loaded. All requirements declared in a class or
implementation context, will be resolved on construction.
All requirements declared in a function context, will be
resolved at each call. Due to is state-like purpose, is not
possible declare a requirement inside a property. Normally,
the request lookup begins by the requiring context, and
then passes down through the context stack, until it reaches
that one that can satisfy it. Is possible to alter this behavior,

by specifying the reference context. Possible values are
local (only local context), global (only global context),
ancestor (any parent context but not local), or an identifier
of any user define context.

public class Console { ... }
public class Debugger { ... }

public context ConsoleContext {
 public implement ITextWriter use Console; (i2)
}

public class File {
 public implement ITextWriter { ... } (i1)
 public constructor File() {
 require ITextWriter; (f1)
 require local ITextWriter; (f2)
 require ancestor ITextWriter; (f3)
 require global ITextWriter; (f4)
 ... (b)
 }
}

public implement ITextWriter use Debugger; (i3)

on IModule.load() {
 require ITextWriter; (g1)
 require Console ITextWriter; (g2)

 enter ConsoleContext {
 require ITextWriter; (c1)
 require ancestor ITextWriter; (c2)
 require global ITextWriter; (c3)
 var file = new File(); (a)
 }
}

The runtime context stack in (b), after the constructor call
in (a) is global→Console→File. (f1)(f2) are statically
resolved in (i1). (f3) is resolved at runtime in (i2) (the first
ancestor implementing ITextWriter is Console context).
(g1)(c3)(f4) are statically resolved in (i3). Even (c2) is
statically resolved in (i3) (its parent is global, and does not
depend on call stack). (g2) is resolved statically in (i2)
Any requesting interface marked as local, it will be also
accessible in the calling context using this accessor. This
make sense, because local constraint ensure that the
implementation will be performed in the same context in
which the request was made. Even in this case, any
ambiguity can be resolved by specifying the interface
name.

require local IConsole;
on IModule.load() {
 WriteLine(); (a)
 this.WriteLine(); (b)
 IConsole.WriteLine(); (c)
}

(a) due to the local modifier, WriteLine of IConsole is
mapped in local context (this can be omitted). The
compiler will ensure that all requests will be resolved at
runtime, by performing a static check at compilation time.

That means that must exist at least one context, statically
ancestor of the requesting context, that is implementing
requested interface. The search is extended also at global
context of all dependent modules. Is possible to ask for a
new instance of the service (not shared with anyone else),
using a new keyword. For the same principle, is also
possible declare a new instance of an object, specifying
only the required interface. Even when we are
implementing an interface, is possible to specify as use
clause, the context in which get the implementation by
which starting.

require new IConsole;
var x : new IConsole;
public class TextBox {
 public implement IWidget use new global { (a)
 }
}

(a) Means that the base implementation of IWidget must be
retrieved from global context, that must be return a new
instance;

5.9 Extension

Public extend class File { (a)
 public override implement IStream (b)
 use base { ... } (c)
 public override implement ITextReader
 use BaseTextReader { (d)
 }
 public implement IItem {... }
}
public extend type String { (e)
 public implement IComparable { ... }
}

By extend keyword (a) is possible to alter a type defined
into a compiled module on which we are dependent.
Extend can be applied to a class, primitive type and UDC.
To override an existing implementation, the override
modifier (b) must be specified. When we are overriding an
existing implementation, we can choose to reuse the old
one as base, or starting a newly implementation (d). To use
the old as base, the base keyword must be specified as use
clause (c). Inside an extend block, is possible to declare
any new additional function, variable or implementation.
However, is not possible to override existing public
functions. Is also possible use extend, to implement an
interface on a primitive type (e). As constraint, all declared
structures must be stateless. Any extension do not alter the
type-safety. Even changing the implementation of some
interfaces, the public semantic do not changes. Every
dependence can be only at interface level, and all different
implementations, share and expose the same public view.
To block any extension, is possible to specify the final
keyword. At class level, means that the class cannot be
extended (either by adding or overriding an existing
implementation). At implementation level, means that only

that particular implementation cannot be overridden, and so
for the function level. In addition to its protection purpose,
final keyword allows the compiler to produce a more
optimized code, reducing the amount of v-table request. If
more than one module overrides the same interface of the
same type, the order of the dependencies will establish the
priority. Is possible to apply an extension of an existing
type, only If no instances of that type has been created,
before the extension module was loaded.

Public class File { (e)
 public implement IInputStream {... }
 public implement ISeekable {... }
}
Public implement ITextWriter (c)
 for IInputStream {
 require local ISeekable;
}
public delay implement ILogger (b)
 for ITextWriter {
 public function Log (msg : string,
 level : LogLevel) {
 WriteLine(Now() + “:(“ + level + “) ” + msg);
 }
}
var x : = new File();
x.Log(“Hello”, LogLevel.Info”); (d)
var y : ITextWriter = x;
y.Log(“Hello2”, LogLevel.Info”); //error (a)

A more powerful extension mechanism can be obtained
using the implementation injection. With this technique, is
possible to spread an interface implementation, in all
context that implement the target interface. The instruction
is “implement A for B”, that means “if you implement B,
then you will receive this implementation of A” . In the
example, (c) say “if you are an IInputStream and also
implement ISeekable, then you will inherit this
implementation of ITextWriter”. File class (e) satisfy
those requirements, so automatically will be injected with
this ITextWriter implementation. Now File is an
ITextWriter. Similar, (b) say, “if you are a ITextWriter,
then you will inherit this implementation of ILogger”. Now
File is also an ILogger, so is possible to invoke Log
method from a File instance (d). Similar for the local
requests, all member of target interface will be accessible
inside the implement block. Anyway, such extension will
be applied only if the target context does not already
implements this interface. To give the priority to the
extension, must be used override modifier. Using the
delay (b) clause, the extended interface will be loaded in
target type, only after first access. This may fragment the
heap, but avoids massive loading of rarely used services.
The implement for statement does not alter the context
and must be declared in global scope. If they was declared
some local requirements, only the contexts that satisfy all
constraints will inherit the service. If context is marked as
final, then the extension will be ignored. Since that many
types could not receive the extension, the access to the

newly implemented interface is not allowed from target
interface (a). However, is possible to declare an assert
constraint, to ensure that all target types implement the
injected interface.

assert ITextWriter : ILogger

5.10 Event
An event in ‘S is very similar to that one of c#, and can be
defined as a notification mechanism to inform some actors,
called listeners, that something is changed or happened.
An event declaration is similar to a function declaration,
except that an event cannot have a body, or return type.
Events can be declared only at interface level, with
keyword event. Only that one that implement this interface
can raise that event, using raise keyword. Is possible to
attach many listeners (also called event handlers). When an
event is raised, all event handlers will be executed, in the
order under which attach was made. There are two ways to
attach an event handler. With on keyword, to declare a
local-scoped event-handler. In this case, target event must
be directly provided by a variable (or requirement) declared
in the same (or parent) scope of event handler:

var car : Car;
on car.Move() { ... } (a)
on car.Engine.Start() { ... } //error (b)

Regardless on declaration position, attach occurs any time
that the event-source variable changes its value. Prior the
execution of any attach, if the event handler is already
attached to a different object, detach will occur. The detach
will also occurs when either source object or event handler
become out of scope. The event handler (d) must provide
the same arguments declared in the event prototype (e),
except for the first one, that must be a reference to the
interface in which the event is declared.

public interface IJob {
 event Started(); (e)
 function start();
 property Name : string;
}
public class Job {
 public constructor(name : string) {
 Name = name;
 }
 public implement IJob {
 public function Start() {
 raise Started(Now());
 }
 }
}
require IConsole;
public function Sample() {
 var j : IJob;
 j = new Job(“job 1”); (a)
 j.Start();
 j = new Job(“job 2”); (b)
 j.Start();
 (c)

 on j.Stared(sender : IJob) { (d)
 IConsole.WriteLine(sender.Name);
 }
}
//output
“Job 1” “Jbo2”

(a) event handler j.Stared is attached to the object job 1.
(b) j.Stared is detached from the object job 1, and
attached to the object job 2. (c) j.Stared is detached from
the object job 2, because both j and j.Stared are out of
scope.

When is necessary to let an event handler surviving, even
when the source variable changes value or exit from the
scope, is possible to invoke the attach and detach
instructions.

function OnJobStarted(sender : IJob) { ... } (a)
function Sample(jobs : Job[])
{
 foreach (var job in jobs)
 attach OnJobStarted to job.Started (b)
}

Attach (b) accepts any function with the prototype
compatible (a) to the event declaration. Also in this case,
first argument must be a reference to the declaration
interface. Using attach, there is no limitation on the event
source member.

5.11 Generics
Generic types are implemented on the principle of those of
C#, with similar syntax. Can be generic a class, an
interface, a base or a filter. Currently, there is no support
for covariance / contravariance, or for generic functions.

public interface IList<T> where T : IComparable {
 function Insert(item : T);
}
public base BaseList<T> : IList<T> where T { ... }
public base IntList : BaseList<int32> {... }

public class DoubleList<T> where T : IComparable {
 public implement IList<T> use BaseList<T> {
 }
 public implement IList<int32>
 use IntList
 as SecondList { (a)
 }
}
var x = new DubleList<string>();
x.Insert(“foo”);
x.Insert(1);
x.IList<string>.Insert(“foo2”);
x.SecondList.Insert(3);
var x = new DubleList<int32>(); //error (b)

By where clause, is possible constrain the generic
parameter to implement certain interfaces. Are also valid as
constraint value (only a value type) or class (only a
concrete class). For a better readability of the interface
identifier, during an explicit member access, is possible to

specify an alias (a). Is possible to implement the same
generic interface into the same class, providing differ
generic arguments (b).

5.12 Conditional Function
Is possible to declare two identical functions in the same
scope, specifying a dispatch condition. Such functions must
be marked with conditional keyword, and the condition
can be expressed through where keyword. The condition
can be any boolean expression evaluable in the function
scope (the scope in which function is declared).

conditional function Format(
 value : int32
 format : string) : string
where (format == “x”) { ... }

conditional function Format(
 value : int32
 format : string) : string
where (format.StartsWith(“b”)) { ... }

If many functions satisfy the dispatch condition, only the
first one will be called, in the order under which were
declared. Once a function is marked as conditional, , all the
instances of such function must be also conditional. A
conditional function can’t be overridden, but can be
overloaded.

5.13 Member Function
A global function can be mapped as a member of specific
type or types. This can be useful when a function is not
specific for a particular type, but works indistinctly with
both, or to add some public shared function to an interface,
that can be suitable regardless of the implementation.

function Print : (printer : member IPrinter,
 document : member IDocument,
 pages : int32)
{ ... }
var x : IPrinter;
var y : IDocument;
x.Print(y, 1);
y.Print(x, 1)

Calling the function from the target type, the argument with
its references will be hidden. More formally, if function A
declares (x, T1, T2, y) arguments, and is mapped on type T1
and T2, then T1 will have A(x, T2, y), and T2 will have A(x,
T1, y).
If member modifier is specified in return type, the function
can be used as constructor of specified type11

11 Only with class or struct type

. In this case,
the function acts as a normal constructor, and this
keyword refers to the instance of the newly created object:

function VerticalLine(pos: PointF,
 len: float) : member Line {
 this.x1 = pos.x; this.y1 = pos.y;
 this.x2 = pos.x; this.y1 = pos.y + len;
}

function Origin() : member Point {
 x = 0; y = 0;
}

var l : Line;
l = new VerticalLine(new Origin(), 10);

VerticalLine is not a subtype of Line, is simply a named
constructor. This technique can be used when constructor is
ambiguous, and the behavior cannot be deduced by
arguments. An hypothetical HorizontalLine, would be
declared with the same arguments, but different meaning,
and the standard constructor it could not be used.

5.14 Type conversion
By conversion keyword, Is possible to declare a user-
defined type conversion. The scope in the conversion
function, is that one of source type that must be converted.
Converted value can be returned using return instruction
(a). A conversion, can be declared as implicit or
explicit. Implicit conversion, will be automatically
performed by compiler. Explicit conversion, instead, must
be explicitly declared using the cast operator.

public struct Fraction
{
 public constructor(n : int32, d : int32) {
 Num = n; Den = d;
 }
 public var Num : int32;
 public var Den : int32;
}
public conversion implicit Fraction to float {
 return Num / Den; (a)
}
var f : float = new Fraction(10 / 5);

Declaring a conversion function, in fact it means defining a
subtyping relation between involved types. Any high-cost
conversion must be never declared as implicit, the
programmer must be always aware of what he is going to
do.

5.15 User defined type
By type keyword, is possible to define new types, based on
an existing primitive type. This help to introduce different
behavior associated to that particular data type, normally
represented with a primitive type (e.g. a percentage,
currency, color, etc).

public explicit type Email : string: (d)
public type Currency : float
{
 public override implement IFormatter { (e)
 public function Format() : string {

 return “€. “ + Round(this, 2);
 }
 }
}
var x : Currency = 10.126; (a)
var y : float = x; (b)
var z : object = x; (c)
var k : Currency = y; (f)
IConsole.Write(x); //€ 10.13
IConsole.Write(y); //10.126
IConsole.Write(z); //€ 10.13

However, we must always be aware of the meaning of this
operation. A primitive type comes with no runtime type
information. Casting a primitive type to an object (or any of
its implemented interfaces), cause a box operation to be
involved, so that any type information will be preserved
(c). Contrary, passing among two different primitive types,
it cause the type-qualify to be loose (b). An user defined
type cannot change the physical nature of its base type, so
is not possible declare any state information. However is
possible to implement a stateless interface (e). An user
defined type is not strictly a subtype of its base type, both
are interchangeable (b)(f). However, due to the type
loosing issue, is possible to specify the explicit qualifier
during type definition (d), so that only explicit cast will be
permitted (except in literal assignation).

5.16 Conclusion
In conclusion, we want to propose our solution for the
classic AST problem [61][63][65][31][37][45]:

public interface IEvaluable<T> {
 function Eval () : T;
}
public interface IExpression : IEvaluable<int>;
public interface ILeftRight : IExpression {
 property Left : IExpression;
 property Right : IExpression;
}
public interface ILiteral<T> : IExpression {
 property Value : T;
}
public class Literal {
 public implement IExpression;
 public implement ILiteral<int>;
 public implement IEvaluable<int> {
 public function Eval() : int {
 return Value;
 }
 }
}
public class Plus {
 public implement IExpression;
 public implement ILeftRight;
 public implement IEvaluable<int> {
 public function Eval() : int {
 return Right.Eval() + Left.Eval();
 }
}

With service model, we can take advantage of any existing
implementation of any declared interfaces, even if in this
example we do not use any base implementation of

IExpression or IEvaluable. A dynamic extension is
possible even without source code:

assert IExpression : IFormattable;

public interface IFormattable {
 function Format() : string;
}
public extend class Literal {
 public implement IFormattable {
 public function Format() : string {
 return Value;
 }
 }
}
public extend class Plus {
 public implement IFormattable {
 public function Format() : string {
 return “(“ + Right.Format() + “+”
 Left.Format() + “)”)
 }
 }
}

6. RELATED WORKS
Our works cover mainly three topic (a) code reuse (b)
modularity and extensibility (c) implementation
independence. Most of related works, instead, cover only
one of this aspects, so could be hard an effective
comparison. With all trait[15][6], mixin[10][11][26][2]
[23], single / multiple inheritance, is not possible modify an
existing type, any new feature can be declared only by
defining a new type. Additionally the presence of many
inheritable / reusable structures, laid a question: what must
be expressed by means of traits or mixin? and what,
instead, using specialization? In ‘S classes cannot inherit,
and is available an unique mechanism of code reuse. In ‘S
we can choose to apply an extension to an existing class, or
to a family of classes (all that one implementing a certain
interface), or even to define a new class, reusing the
elementary building blocks that compose the old one. In
both traits and mixins, the connection with the host class is
performed by abstract methods, but different units may
require a method with the same signature but different
meaning. Additionally mixins must be linearly applied, and
traits do not allow state. We will not argue anymore about
this, the literature[47][37][31] is rich of more accurate
analysis about the weakness of each of this methods. ‘S
does not require any mechanism to merge or intersect its
base components, each interface defines a distinct behavior,
and composition is linear. If two interfaces define a
member with the same name, we can simply disambigue by
specifying the name of the interface we are referring to.
Aspects[44][39] are substantially different from services.
They operate as observer, and provides a solution for
problems that are cross-cut to the classes (es. Logging).
Cannot be considered neither a unit of reuse nor a service,
even if they can be used as they would be. Similar (but less
powerful) results experienced with aspects, can be achieved
using ‘S filters. Existing languages do not provide a built-in

support to realize the ‘inversion of dependence’[38].
However, using some design pattern we can obtain similar
results (for example, we could take advantage of c++
template and smart-pointers[1]). Multiple inheritance,
suffers of diamond (duplicated base class). This may cause,
duplication of state, problems during the initialization
(multiple or ambiguous call to a base constructor), and the
existence of multiple paths to reach a superclass method.
Several technique was proposed to avoid this issues, such
as linearization[3][17], renaming[40], virtual
inheritance[18]. C++ virtual inheritance can handle any
composition rules, without exceed on infrastructure. Base
initialization problem expressed in [37], can be solved by
using a specific init functions in place of the constructor.
For instance, using the abstract class as interface, and
expressing both the requirements and implementation by
means of multiple inheritance, then we can obtain a
composition power, comparable to that one of 'S. However,
there would not be any formal distinction between what is a
conceptual requirement, and what is instead an extension.
In such situation, a class is allowed to “implement” an
abstract function, even if its purpose was to be
implemented elsewhere. CZ[37] suggests a solution that
can resolve that ambiguity, by allowing to distinguish an
extended class from a required one. Regarding single
inheritance, a number of design patterns[27] (Visitor,
Delegation, Observer, Abstract factory, etc) can be applied
to obtain similar flexibility of ‘S, however the pattern
existence itself can be view as a lacks of target language:
the inability to express a particular design problem with
any built-in language construct. For the same reason we are
using an OO language when we think “objects” (even such
model can be fully expressed using ‘patterns’ in languages
like C[56]), we should use a specific language to think
“services”. Our services model have no substantial
difference with any existing component model. However, a
component model covers a wide range of problematic, such
as the interoperability between different languages, inter-
process and network communication, that 'S does not cover.
Compared to COM[54], ‘S has the advantage to keep a
local and dynamic interface-implementation catalog,
instead of a global one. Additionally, has the capabilities to
extend or change existing services, and to propagate an
interface implementation, without edit source code. A
method-based extensibility similar to ‘S member functions
is available also in Open classes[13], expander[64], and
extension methods[41]. All adopt similar approach, and all
suffer of the inability to declare state. Multijava[13] and
CZ[37] languages, provides a mechanism for dynamic
dispatching, similar to conditional function of ‘S.
Nevertheless, ‘S allow to express the dispatch condition by
using expressions that can evaluate even external
conditions. Other approaches to extensibility are virtual
classes[35], nested inheritance[45], or scala[49] abstract
type. All this technique allow a massive extension in a set
of correlated and nested classes (family

polymorphism[20]). One advantage is that each extension
lays under a special class that “host” all extendible classes.
Any extension is not invasive, and we can always choose to
use the old class family instead of the extended one. The
most notable model diverging from classic OO, is that one
prototype-based. First in self [62] and then other languages,
such as ECMAScript[25], the prototypes offer a natural
way to think objects. All is an object, and all object
instances are created by cloning an existing object (the
prototype). Newly created object, can diverge from its
original copy and define new behavior or state. However,
that imply a dynamic type system. The world of dynamic /
duck typed (e.g. ruby [24]) languages, allow a flexibility
and expressiveness that many static and strongly typed
approach does not. However, we will not make any
comparasion with such languages, because simply are
based on different philosophies. ‘S is born to be fast. A
dynamic system cannot be realized without a cost. Most of
the member access must be dynamically dispatched using a
name dictionary, and the memory slot holding a dynamic
typed object at runtime, must contain all the structure
necessary to self-describe the type, and even, to modify it.
Over the performance issues, there is a number of
advantages in static / strongly typing, such as reduce
runtime errors, simplify the debug and coding, help the
development tools to introduce more facilities (e.g.
Intellisense). A static-typed prototype-based system was
advanced in [31]. In such model, there is no more
distinction between objects and types. All is an object (or a
type), even the literals are cloned from its base type (e.g.
‘3’ is subtype of int). New objects can be defined, also by
combining more than one prototype. Similar to ‘S,
prototypes provides a simple and unique mechanism for
code reusing, and maybe they can be considered the most
valid alternative to our approach.

7. TRANSLATION TO C#
We do not provide in this paper any formal definition
(either grammar or semantic) of ‘S, however we show how
the type system of 'S can be full expressed using the type
system of c#.

7.1 Overview
Some features have a direct equivalent in C#, some other
requires some support code provided by our runtime
library[29]. Use of such library, however, must be
integrated with a lot of infrastructural code, that anyway
may be auto-generated (in a future) using a translation
tools.
C# supports variables, properties, events, structs, type
conversions, exceptions, interfaces and interfaces
inheritance in the same way ‘s does. C# 4.0[41] also
supports type inference, and auto-implemented properties.

7.2 Function
C# 3.0 does not support optional arguments (will be
supported in c# 4.0). Alternatively is possible to use
method overload:

//s
function format(format : string = “”) {...}

//c#
void Format() { Format(“”) }
void Format(string format) { ... }

C# does not support code outside a class context, thus any
global function must be declared as static into an utility
class. Extension methods may be used to group these
functions into a “virtual type”.

7.3 Context
Context is emulated with a static class called Context. This
class manages the context-stack, and allow a quick access
to local and global context (respectively with Local and
Global property). A call to Enter method will cause
specific context to be pushed into the stack, a call to Exit
to be popped. Any call to enter / exit, must be performed
inside a try - finally block, to ensure that context will
be restored properly, in case of exceptions. Is possible to
enclose any context specifics code in a using block,
passing a wrapper object (ContextScope). This object will
invoke automatically Context.Enter (using the context
passed to the constructor), and then Context.Exit in
Dipose method.

//s
enter MyContext {
 ...
}

//c# (a)
Context.Enter(MyContext.Instance);
try {
 ...
}
finally {
 Context.Exit(MyContext.Instance);
}
//c# (b)
using (new ContextScope(MyContext.Instance)) {
 ...
}

All classes representing a context, must implement
IContext. Since a service can be implemented only inside a
context, a class implementing a service must also
implement IContext, so every service interface can extends
IContext.

public interface IContext {
 T Require<T>() where
 T : class, IContext;
 void Implement<T>(IContext obj) where
 T : class, IContext;

 IContext Parent { get; set; }
}

Calling Implement<T> is possible to assign a T service
implementation on that context. Implement<T> can has
different behaviors depending on context type. Every call
to Implement<T> or Require<T> on Context, will be
redirect to the current (local) context.

//’s
implement ITextWriter use new Console()
require ITextWriter;
ITextWriter.WriteLine(“Hello”);

//c#
Context.Implement<ITextWriter>(new Console());
...
Context.Require<ITextWriter>().WriteLine(“Hello”);

7.4 Implementation
Any ‘S-interface-implementation must be performed in a
separated class, inheriting from Base<T> (where T

represent host context, the context in which implementation
is used). Host context is passed on constructor, and then
stored in a private field (of T type) called _instance.
Parameter T must be specialized only in classes and in user-
defined contexts, bases must remain generics on T. Base<T>
implements IContext, redirecting any request to host
context. Local requirement can be represented using a
generic-argument constraint on T, so that will be also
possible have access to all required interfaces using
_instance without any cast or runtime type-checks. Not-
local requirements, must be declared in specific fields (of
the same type of required interface), and initialized calling
Contex.Require:

//’s
public base BaseStream : IStream {
 require local ISeekable;
 require IConsole;
}

//c#
public class BaseStream<T> : Base<T>, IStream
 where T : ISeekable {

 protected readonly IConsole IConsole
 = Context.Require<IConsole>();

 public BaseStream(T instance)
 : base (instance) { }
}

Unimplemented interface members must be declared as
abstract (and therefore, the base class too). If
implementation handles an interface that uses inheritance,
all inherited interfaces must be treat as local requirements,
and declared as constraints of T. Then, such interfaces must
be implicit implemented, redirecting each method to the
host class

//’s
public interface IStream { function Close(); }
public interface IInputStream : IStream { ... }
public base BaseInputStream : IInputStream { ... }

//c#
public class BaseStream<T> : Base<T>, IInputStream
 where T : IStream { ...
 void IStream.Close() {
 _instance.Close();
 }
}

7.5 Class
Any ‘S-class must inherit from ServiceObject. Every
implemented interfaces, must be declared into a private
nested class that inherits from Base<T> or from an existing
base. T argument must be specialized with the class type.
For argument must be specialized with the class type. For
each implemented interfaces, must be declared also a
specific private field that will hold the implementation
instance, and a public property with the same name / type
of implemented interface. This property can be used to
have a quick access to ambiguous members. Finally the
class must implement all interfaces, redirecting every call
to associated implementation instance. All conflicting
members must be implemented as implicit.

//’s
public class File {
 public implement IStream {
 public function Close() { ... }
 }

 public implement IInputStream use
 BaseInputStream;
}

//c#
public class File : ServiceObject, IInputStream {
 class Stream : Base<File> : IStream {
 public void Close() { ... }
 }
 class InputStream : BaseInputStream<File> {
 }

 Stream _stream = new Stream(this);
 InputStream _inputStream =
 new InputStream(this);

 public IStream IStream {
 get { return _stream; }
 }
 public IInputStream IInputStream {
 get { return _inputStream; }
 }

 public void Close() {
 _stream.Close();
 }

 public int ReadByte() {
 return _inputStream.ReadByte();
 }
}

Equivalent to “S”, we can have access to implemented
service, using a flattern or component-driver view:

File file = new File();
file.ReadByte();
file.IInputStream.ReadByte();
file.Require<IInputStream>().ReadByte();
(file as IInputStream).ReadByte();

7.6 User defined type
User defined type can be emulated using structs and
conversion operators:

//’s
public type Percentage : float;

//c#
public struct Percentage {
 float _value;

 public Percentage (float value) {
 _value = value;
 }

 public static implicit
 operator float(Percentage obj) {
 return obj._value;
 }

 public static implicit
 operator Percentage(float value){
 return new Percentage(value);
 }
}

7.7 Implement for, and class extension
The role of ServiceObject is also manage dynamic
extension . Each extension will be added to an internal list
of RuntimeExtension:

public class RuntimeExtension {
 public object Instance;
 public Type ExtensionType;
 public IEnumerable<Type> ImplementedServices
}

Upon the first call to Request or Implement methods, will
be enumerated all suitable extensions for that class, even
those that are referred to its services. The extension must be
implement into a class inheriting from Extender<T>,
(where T is the extension target) and registered to the
extensions catalog, held by the Context:

//’s
public extend class Stream {
 public implement ILogger { ... }
}

//c#
public class StreamExtender : Extender<Stream>,
 ILogger { ... }
Context.ExtendBy<StreamExtender>();

The extension class will be created only after the first
request to one of its services. After creation, extension class
will receive the instance of extended class, calling Bind
method. Extender<T> implements IContext, all requests
made to an unimplemented service, will be redirected to the
target object.

Stream obj = new Stream();
ILogger logger = obj.Require<ILogger>();
IStream stream = logger.Require<IStream>();

ILogger is implemented through an extension class,
therefore logger variable is a StreamExtender instance.
IStream is not implemented by StreamExtender, therefore
request handling will pass to extended object (Stream), that
can successfully satisfy it.

Using extensions methods, is possible to flattern an
extension interface:

public static ILoggerForIStreamExtender {
 static string Log(this IStream stream,
 string text) {
 return stream
 .Require<ILogger>()
 .Log(text);
 }
}
var obj = new Stream();
obj.Log();

7.8 Conditional function
Conditional function are not easy to emulate, and needs a
lot of infrastructure. Every conditional function must be
represented by an interface with two methods: (a) Check,
used to evaluate the condition, (b) Invoke, used to realize
the function. Both methods must accept as first argument
the instance of the type that declare conditional function,
and then all arguments of target function. Every condition /
body must be implemented in a distinct class. Finally, must
be declared a static class holding all the instances of varies
implementations, exposing an Invoke method that will
dispatch the call to the first one that will satisfy the
condition:

//’s
conditional function FormatHex(string : format)
 : string where (...) { ... }
conditional function FormatBinary(string : format)
 : string where (...) { ... }
//c#
public interface IFormatFunction {
 bool Check(int32 target, string format);
 string Invoke(int32 target, string format);
}

public static class FormatFunction {
 static List<IFormatFunction> _list;

 public static void Add(IFormatFunction item) {
 _list.Add(item);

 }

 public static string Invoke(this int32 target,
 string format) {
 foreach (var item in _list)
 if (item.Check(target, format))
 return item.Invoke(target, format);
 }
}

class FormatHex : IFormatFunction { ... }
class FormatBinary : IFormatFunction { ... }

public static void Main() {
 FormatFunction.Add(new FormatHex());
 FormatFunction.Add(new FormatBinary());
}

7.9 User defined context
Any ‘S-user-defined context must inherit from
UserContext, and have only a single shared instance
accessible in a static property called Instance (singleton).
Every implemented services must be declared on
constructor calling Implement<> method:

//’s
public context CommandLine {
 public implement ITextWriter use Console;
}

//c#
public class CommandLine : UserContext {
 private CommandLine() {
 Implement<ITextWriter>(new Console());
 }
 public static readonly CommandLine Instance =
 new CommandLine();
}

7.10 Member-mapped function
Single-type member function can be mapped one-to-one
with extension methods. Else must be declared one
extension method for each target member, that must appear
as first argument:

//’s
function Print(printer : member IPrinter,
 document : member IDocument,
 count : int32) { ... }

//c#
public static class PrintExtender {
 static void Print(this IPrinter printer,
 IDocument document,
 int copyCount) {
 ...
 }

 static void Print(this IDocument document,
 IPrinter printer,
 int copyCount) {
 Print(printer, document, copyCount);
 }
}

7.11 Custom constructor
The custom constructors cannot be realized. Alternatively,
can be used a static functions in target class (or utility class,
if source code is not available).

//’s
public function Origin() : member Point {
 x = 0; y = 0;
}
var p : Point = new Origin();

//c#
public class Point { ...
 public static Point CreateOrigin() {
 return new Point() { x = 0, y = 0 };
 }
}
Point p = Point.CreateOrigin();

8. CONCLUSION AND FUTURE WORK
We have shown an alternative way to think and model the
world of objects, that does not suffer of many of the
limitations, found in related works. ‘S is unambiguous, and
provides an essential, but powerful set of composition
structures. ‘S simplify the components creation, allowing a
widely reuse mechanism and a better maintenance, without
loose the advantages of a static and strongly type system.
Even if without a rigorous and formal translation, we have
shown how ‘S can be fully mapped in a traditional OO
language, such as C#. This let we hope that some formal
properties proof in C#, will be also valid ‘S. However, the
next step on ‘S development, is write a formal definition.
Generate c# has several advantages, first of all, have access
to the huge class library provided by .NET Framework.
Nevertheless, the first aim of ‘S is to be a decomposable
system, that can run even in a low-resources environment.
Thus, we are currently working to an ‘S compiler that can
generate pure C code. C means portability and speed in
almost any platform. Due to the synthesis needs and an
immature developing status, we decided to not discuss
about it in this paper. As anticipation, we are
experimenting in our test, a very effective code, needing a
minimal runtime environment. This let us to hope that an ‘S
program will be run also in a embedded system.

9. ACKNOWLEDGMENT
(todo)

10. REFERENCE
[1] A. Alexandrescu. Modern C++ design: generic

programming and design patterns applied. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
2001.

[2] D. Ancona, G. Lagorio, and E. Zucca. Jam - designing
a Java extension with mixins. ACM Trans. Program.
Lang. Syst., 25(5):641–712, 2003.

[3] K. Barrett et al. A monotonic superclass linearization
for dylan. In OOPSLA (1996), pages 69-82.

[4] D. Batory, J. Liu, and J. Sarvela. Refinements and
multi-dimensional separation of concerns. ACM
SIGSOFT, 2003.

[5] D. Batory, J. N. Sarvela, A. Rauschmayer. Scaling
step-wise refinement. In ICSE (2003), pages 187-197

[6] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts.
Stateful traits and their formalization. Computer
Languages, Systems & Structures, 34(2-3):83–108,
2008.

[7] L. Bergmans. The composition filters object model. In
Proceedings of the RICOT symposium on Enabling
Objects for Industry, 1994.

[8] A. P. Black, N. Scharli. Traits, Tools and
Methodology. In ICSE (2004), pages: 676 - 686.

[9] J. Boyland and G. Castagna. Parasitic methods: An
implementation of multi-methods for Java. In OOPSLA
(1997), pages 66–76.

[10] G. Bracha and W. Cook. Mixin-based inheritance. In
ECOOP, 1990.

[11] G. Bracha. The Programming Language Jigsaw:
Mixins, Modularity and Multiple Inheritance. Ph.D.
thesis, University of Utah, 1992.

[12] Y. Caseau. Efficient handling of multiple inheritance
hierarchies. In OOPSLA (1993), pages 271-287.

[13] C. Clifton, G. T. Leavens, C. Chambers, and T.
Millstein. MultiJava: modular open classes and
symmetric multiple dispatch for Java. In OOPSLA
(2000), pages 130–145

[14] F. R. Campognoni. IBM’s system object model. Dr.
Dobb’s, pages 24–28, 1994. Winter 1994/1995.

[15] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and
A.P. Black. Traits: A mechanism for fine-grained
reuse. In ECOOP, 2003

[16] M. Dooren, E. Steegmans. Language constructs for
improving reusability in object-oriented software. In
OOPSLA (2006), pages 118-119.

[17] R. Ducournau, M. Habib, M. Huchard. M. L. Mugnier.
Proposal for a monotonic multiple inheritance
linearization. In OOPSLA (1994), pages 164-175.

[18] M. Ellis and B. Stroustrup. The Annotated C++
Reference Manual. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1990.

[19] E. Ernst. Propagating class and method combination.
In ECOOP, 1999.

[20] E. Ernst. Family polymorphism. In ECOOP, 2001.
[21] E. Ernst. Higher order hierarchies. In ECOOP, 2003
[22] E. Ernst, K. Ostermann, W. R. Cook. A virtual class

calculus. In POPL (2006), pages 270–282.

[23] R.B. Findler and M. Flatt. Modular object-oriented
programming with units and mixins. ACM SIGPLAN
Notices, 34(1):94–104, 1999.

[24] D. Flanagan, Y. Matsumoto. The ruby programming
language. O'Reilly, 2008.

[25] D. Flanagan. JavaScript: The Definitive Guide.
O'Reilly Media. Inc.. 2006

[26] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes
and mixins. In POPL ’98, 1998.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, Reading, MA,
1994.

[28] S. Gudmundson, G. Kiczales. Addressing practical
software development issues in AspectJ with a pointcut
interface. In Advanced Separation of Concerns,
Workshop at ECOOP (2001).

[29] A. Guerrieri. Service Model C# Library.
http://www.eusoft.net/serviceModel.rar. 2010.

[30] W.H. Harrison, H. Ossher. Subject-Oriented
Programming (A critique of pure objects). In OOPSLA
(1993), pages 411–428.

[31] D. Hutchins. Eliminating distinctions of class, using
prototypes to model virtual classes. In OOPSLA
(2006), pages 1-20.

[32] N. Josuttis. Soa in Practice: The Art of Distributed
System Design, O'Reilly Media, Inc., 2007.

[33] G. Kiczales, M. Mezini. Aspect-oriented programming
and modular reasoning. In ICSE (2005), pages 49–58.

[34] R. Lopez-Herrejon, D. Batory, and W. Cook.
Evaluating support for features in advanced
modularization technologies. In ECOOP, 2005.

[35] O. L. Madsen, B. Møller-Pedersen. Virtual classes: A
powerful mechanism in object-oriented programming.
In OOPSLA (1989), pages 397 - 406

[36] O. L. Madsen, B. Møller-Pedersen, K. Nygaard. Object
Oriented Programming in the BETA Programming
Language. Addison-Wesley, June 1993.

[37] D. Malayeri, J. Aldrich. CZ: multiple inheritance
without diamonds. In OOPSLA (2009), pages 21-40.

[38] R. C. Martin: The Dependency Inversion Principle. In
The C++ Report, 1996.

[39] H. Masuhara, G. Kiczales. Modeling crosscutting in
aspect oriented mechanisms. In ECOOP (2003), pages
2–28.

[40] B. Meyer. Object-Oriented Software Construction, 2nd
Edition. Prentice-Hall, 1997.

[41] Microsoft Corporation. C# Version 4.0 Specification.
http://download.microsoft.com/download/7/E/6/7E6A5
48C-9C20-4C80-B3B8-

http://www.eusoft.net/serviceModel.rar�
http://download.microsoft.com/download/7/E/6/7E6A548C-9C20-4C80-B3B8-860FAF20887A/CSharp%204.0%20Specification.doc�
http://download.microsoft.com/download/7/E/6/7E6A548C-9C20-4C80-B3B8-860FAF20887A/CSharp%204.0%20Specification.doc�

860FAF20887A/CSharp%204.0%20Specification.doc.
March 2009.

[42] L. Mikhajlov, E.Sekerinski. A Study of the fragile base
class problem. In ECOOP (1998), pages 355–382.

[43] D. A. Moon. Symbolics Object-oriented programming
with flavors. In OOPSLA (1986), pages 1-8.

[44] G. Murphy, C. Schwanninger. Aspect-oriented
programming. IEEE Software 23:1 (2006), pages 20–
23.

[45] N. Nystrom, S. Chong, and A. Myers. Scalable
extensibility via nested inheritance. In OOPSLA
(2004), pages 99–115.

[46] N. Nystrom, X. Qi, and A.Myers. J&: Nested
intersection for scalable software composition. In
OOPSLA (2006), pages 21-36.

[47] N. Nystrom. Programming Languages for Scalable
Software Extension and Composition. Ph.D. thesis,
Cornell University, 2007.

[48] M. Odersky and M. Zenger. Scalable Component
Abstractions. In OOPSLA (2005), pages 41-57.

[49] M. Odersky. The Scala Language Specification. At:
www.scala-lang.org/docu/files/ScalaReference.pdf
Version 2.7. March 2009

[50] OMG. The Common Object Request Broker:
Architecture and Specification, December 1991. OMG
TC Document Number 91.12.1, Revision 1.1.

[51] H. Ossher, P. Tarr. Multi-Dimensional Separation of
Concerns and the Hyperspace Approach. Proc. Symp.
Sw. Arch. & Component Technology, 2000.

[52] A. Paepcke. Object-Oriented Programming: The
CLOS Perspective. The MIT Press, 1993

[53] W. H. Peri Tarr, H. Ossher. N degrees of separation:
Multidimensional separation of concerns. Proceedings
of ICSE, 1999.

[54] D. Rogerson. Inside COM. Microsoft Press, Redmond,
WA, 1997.

[55] M. Sakkinen. Disciplined inheritance. In ECOOP,
pages 39–56, 1989.

[56] A.T. Schreiner. Object-Oriented Programming With
ANSI-C. At
http://www.planetpdf.com/codecuts/pdfs/ooc.pdf. 1999

[57] G. Singh. Single versus multiple inheritance in object
oriented programming. SIGPLAN OOPS Mess.,
5(1):34–43, 1994.

[58] A. Snyder. Encapsulation and inheritance in object-
oriented programming languages. In OOPSLA (1986),
pages 38–45.

[59] F. Steimann. The paradoxical success of aspect-
oriented programming, In OOPSLA’06, pages 481-
497, 2006

[60] L. A. Stein. Delegation is inheritance. In OOPSLA
(1987), pages 138-146.

[61] M. Torgersen. The expression problem revisited. four
new solutions using generics. Proceedings of ECOOP,
2004.

[62] D. Ungar and R. Smith. Self, the power of simplicity.
Proceedings of OOPSLA, 1987.

[63] P. Wadler et al. The expression problem. Discussion
on Java-Genericity mailing list. December 1998.

[64] A. Warth, M. Stanojević, T. Millstein. Statically
scoped object adaptation with expanders. In OOPSLA
(2006), pages 37-56.

[65] M. Zenger and M. Odersky. Independently extensible
solutions to the expression problem. Workshop on
Foundations of Object-Oriented Languages, 2005.

http://www.scala-lang.org/docu/files/ScalaReference.pdf%20Version%202.7.%20March%202009�
http://www.scala-lang.org/docu/files/ScalaReference.pdf%20Version%202.7.%20March%202009�
http://www.planetpdf.com/codecuts/pdfs/ooc.pdf.%201999�

	INTRODUCTION
	Contributions

	CLASSES
	Inheritance
	Ambiguity on “is a” relation
	Same object, different services
	Same object, different views
	Same object, multiple components:
	Different state, different class

	LIMIT CODE DUPLICATION
	Strong base class
	Composition and aggregation
	Transparent composition
	Transparent composition with interface

	Helper class
	Static methods
	Conclusion

	SERVICE MODEL
	Introduction
	Features
	Migrating to services
	Service based design
	Composition samples

	“S” LANGAUAGE
	Hello world
	Type
	Variable and Function
	Interface
	Base implementation
	Class
	Context
	Require
	Extension
	Event
	Generics
	Conditional Function
	Member Function
	Type conversion
	User defined type
	Conclusion

	RELATED WORKS
	TRANSLATION TO C#
	Overview
	Function
	Context
	Implementation
	Class
	User defined type
	Implement for, and class extension
	Conditional function
	User defined context
	Member-mapped function
	Custom constructor

	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENT
	REFERENCE

