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ABSTRACT  
Object-oriented programming is nowadays one of the most 
familiar and widely used paradigms. As extensively argued 
in the literature, inheritance, a key feature for code reuse, 
fails in its aim. We impute this failure, to a basic 
conceptual mistake in the “is a” relation. After showing the 
weakness of some strategies to preserve expressiveness 
using single inheritance, we propose an alternative model 
based on services. This model helps to build an object-like 
system that is modular, extensible and reusable by means of 
essential, but powerful design structures. We also introduce 
the S language, through which we can easily express the 
service-oriented paradigm. Finally, we show how to 
emulate S features in an existing OO language. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features; F.3.2 [Theory of Computation]: Semantics of 
Programming Languages; D.1.5 [Programming 
Techniques]: Object-oriented Programming; 

General Term 
Languages, Theory, Design 

Keywords 
Inheritance, Service-Oriented, ‘S, Components 

1. INTRODUCTION 
One of the most important aspects of OO, is the code reuse 
capabilities associated with inheritance. However, in many 
situations, inheritance alone is not enough. To overcome 
these limitations, several techniques has been proposed in 
the literature. Some, try to cover the extensibility problem, 
the ability to modify an existing class hierarchy, even 
without the original source code.  Some other, the code 
reuse problem, the ability to compose a class library, 
combining elementary building blocks. On this side, are 
placed components models, such as CORBA[14] or 
COM[54], or new language-constructs, such as mixin[10] 
and traits[15]. However, almost all of these solutions, do 

not reject the concept of class inheritance, but instead, try 
to improve it. One more not-negligible aspect of software 
development is the portability, the ability to execute an 
application in different platforms. An increasingly popular 
solution are virtual machines / interpreters, sometimes 
accompanied with a wide class framework. This cannot be 
the answer to portability: system are different because 
provide different things, in different manners, and a 
software should be enabled to take advantage of the 
peculiarity of one system over the other. To obtain a more 
portable system, one way is to separate the “needs” (or 
services) from their realization. Using the interfaces and 
applying some design patterns, we are able to keep 
separated this two aspects. However, to properly describe a 
service-based system, we should use a language with a 
built-in service semantic. This language is called ‘S, and it 
will be gradually introduced in this paper.  

1.1 Contributions 
In section 2 will be illustrated as the inheritance, and 
especially single inheritance, cannot represent the real 
world, generating code duplication. We will impute its 
failure, to a basic conceptual mistake of the “is a” relation, 
that does not take in account of the subjectivity and 
dynamicity. In section 3 will be shown some strategies built 
over single inheritance, to maximize code reuse. In section 
4 will be introduced the service model, as an alternative to 
current object model. We will be explained how migrate 
from a class-hierarchical system to a class-based 
component system, on which the class concept goes into 
the background, to leave space to the more abstract and 
flexible idea of service. In section 5, will be presented an 
overview on ‘S language, designed specifically to express 
the service paradigm. Finally, after a more accurate 
comparison with related works, we will show in section 7 a 
possible translation of ‘S into an existing OO language, like 
c#. This paper does not introduce any formalization, 
however it can offer an intuitive idea, with a rich set of 
example and sample code. 

2. CLASSES 
Through classes, we can enclose in a single structure all 
objects having similar features: the presence of a particular 
feature cause that an object belonging to a specific class. 
The class establishes also the identity (or type) of the 
object, through the “is a” relation. If a subset of objects of a 
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specific class has additional features (more specific), we 
can define a new class (subclass) inheriting all features of 
its superclass and including the new features. 

2.1 Inheritance 
Due to the well known and already discussed problems of 
multiple inheritance (first of all, the diamond problem), 
many of modern OO languages allows only single 
inheritance. Example 2.1 shows a simple case evidencing 
single inheritance failure: 

Example 2.1  We have three class C1,C2,C3, and some 
common feature f1,f2,f3. We want to define a class 
hierarchy, thought which share duplicated features: 

C1 = {f1, f2};  C2 = {f2, f3};  C3 = {f1, f3}; 

Moving f1 in a base class, would cause the duplication of 
f2 in C2, because C2 has no common base with C1.  

B1 = {f1}; C1 = {B1, f2}; C3 = {B1, f3}; C2 = {f2, f3} 

Moving f2 in a base class, would cause duplication of f1 in 
C3, and so on.   

Conflicts like those arisen in Example 2.1, may occur 
quite frequently modeling large class systems, a concrete 
example is shown in Figure 1. 
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Figure 1. Some samples classes and their features. Some 
features are shared between unrelated classes, therefore is 
not possible creates a feature-based  hierarchy without 
duplication. 

2.2 Ambiguity on “is a” relation 
Inheritance represent the “is a” relation, but for several 
reasons “is a” cannot model reality. What an object is 
cannot be established by a definition, because that is a 
subjective and dynamic concept. Subjective, because 
different points of view, different uses cases, may give to 
the same object, different identities. Dynamic, because in 
the future we might find a new way to use an existing 
object. Additionally, the identity of an object may also 
depend on its internal state. Regardless of the multiple 
identity that an object can assume in real world, each 
application affects only a limited portion of  real, so an 
hypothetical Rect class in math applications, can be also 
different from a Rect class in graphical applications. Such 

limitation, anyway, does not resolve the “multiple identity” 
problem, as show in following cases: 

2.2.1 Same object, different services 
This occurs when an object exposes more services 
belonging to different domains. 

Example A bicycle is a vehicle, but at the same time, can 
be used in a fitness club as an aerobic machine. 

Example Physically, a serial port is an hardware 
component, so must extend Device class. But from a 
service point of view, a serial port is a Stream, that isn’t a 
subclass of Device.  

2.2.2 Same object, different views 
This occurs when an object belonging to different classes in 
different domains, therefore may exist multiple views of 
same object. Similar analysis was advanced in [30]: 

Example In e-commerce platform, a physical Printer may 
be represented by a generic Item class, exposing only 
attributes and methods useful for sale and delivery (price, 
brand, weight). In the device driver development, the same 
Printer can be represented by a Printer class, that may 
extend Device class, exposing only attributes and methods 
useful to print job (es. Print method) 

2.2.3 Same object, multiple components: 
This occurs when an object is an aggregate of independent 
components / features, therefore each component may be 
used as base class. 

Example A mobile phone with embedded camera can be 
viewed as a specialized Phone (phone with camera) or as a 
specialized Camera (camera with phone). Anyway, is 
possible to reuse only one of two components.  

2.2.4 Different state, different class 
This occurs when the object class changes according its 
internal state.  

Example Ellipse and circle are two different shape, 
belonging to different class. But when both radius of ellipse 
have same value, the ellipse turns into a circle. 

3. LIMIT CODE DUPLICATION 
Due to lack of single-inheritance systems, several technique 
and pattern may be used to limit code duplication. In this 
section are shown some examples, suitable mostly on static 
and strongly-typed languages (such as java, and c#). Will 
not be considered multiple inheritance, traits and mixin, 
which will be discussed later. If reader is already familiar 
with those techniques, can skip this section and move 
directly to section 4. 



3.1 Strong base class 
Some features are joined together in a common base class, 
and each different behavior controlled by attributes and 
flags.  

Example There are different kind of buttons, some that 
differ from their aspect (es. textual, image, etc), some 
others that differ from their behavior (es. toggle, push). We 
can model the aspect with an attribute, and the behavior 
with the specialization: 

public class Button { 
   protected ButtonType _type; 
    
   protected void Paint() { 
      switch (_type) { 
         case ButtonType.Image: 
            ... 
      } 
   } 
} 
 
public class ToggleButton : Button { ... } 
 
Public class PushButton : Button { ... } 

As a design rule, a parameter should be used only if: (a) the 
underlying algorithm strictly depends to it or (b) parameter 
is not constant and its value cannot be determinate design 
time. If a function (or a class) have a different behavior, 
with a different parameter values and domain is limited, 
should be created a specific function (or a class) for each 
value of domain. For example, in following function, the 
format parameter defines the behavior: 

string formatNumber(int value, string format) { 
   if (format == “c”) return ... 
   else if (format == “x”) return ... 
} 

therefore, would be better split formatNumber in two 
distinct functions: 

string formatCurrency(int value) { ... } 
 
string formatHex(int value) { ... } 

If the class capabilities depended on its internal state, the 
type concept itself would fail, because what make two type 
different is exactly what they can do. Even if sometimes, 
some operations are not allowed with some states, the state 
cannot change the nature the object. Besides the conceptual 
problem, there are several disadvantage using this 
approach: 

Extensibility: All different behaviors, are hard-coded into a 
single class, adding a new variant requires to have access to 
source code.   

Memory: Unnecessary memory allocation to maintaining 
on state something that will remain constant for all object 
lifetime. 

Maintenance: The large concentration of different 
behaviors on a single structure, make the source code 
harder to understand and maintain. 

Performance: Code runs slowly due to presence of 
numerous flow control instructions, required to perform 
different action with different state. 

The C++ templates[18] with constant parameters, avoid 
both memory and performance problems, because each 
instance of a template with different parameters, generates 
different code (and types), and in optimization stage all 
constant variables / expressions / statements can be 
removed . For example: 

#define IMAGE 0 
 
template <int TYPE> 
class Button { 
   protected: void Paint() { 
      switch(TYPE) { ... } 
   } 
} 
 
Button<IMAGE> button; 

Conversely, use of  templates requires the distribution of 
source code. 

3.2 Composition and aggregation 
Some features shared across unrelated objects, are 
implemented in separated classes. A class needing such 
features, can include a reference to the component-class in 
a private field,  rather than inherit it.  The host class can 
choose to expose directly the component-class, or create 
wrappers only for specifics methods. The situation 
described in Example 2.2, can be modeled as follow:  

Example SerialPort class can extend Device class, and 
stream service can be implemented in a separated class 
(SerialPortStream) extending Stream. SerialPort can 
include an instance of SerialPortStream in a private field. 

public class Stream { ... } 
public class Device { ... } 
 
public class SerialPortStream : Stream { 
   public SerialPortStream(SerialPort sp) { ... } 
} 
 
public class SerialPort : Device { 
   protected SerialPortStream _stream; 
   
   public SerialPort() { 
      _stream = new SerialPortStream(this); 
   } 
   
   public SerialPortStream Stream {  



      get { return _stream; } }  
   } 
} 
 
SerialPort port = new SerialPort(); 
port.Stream.Read(...); 

It was possible to express a situation that single inheritance 
couldn’t express without code duplication, but with 
following disadvantage: 

Accessibility: Generally the components need to access to 
private member of host class, and vice-versa. Therefore, 
many languages allow to invade private space of classes 
(es. friend keyword in c++, internal keyword in c#), 
breaking the block box concept on which object-
programming should be founded. 

Memory: Each component is allocated in a separate 
memory block, increasing the heap fragmentation. 

Typeing: A component class is not a subtype of host class. 
This makes composition weaker than inheritance. 

3.2.1 Transparent composition 
A class do not expose directly its components. All methods 
provided by components that must be public, are re-
declared in host class. Host class methods, redirects the call 
to associated component method, giving back the return 
value to caller (aca delegation pattern [2])  

public class SerialPort : Device { 
   protected SerialPortStream _stream; 
   
   public SerialPort() { 
    _stream = new SerialPortStream(this); 
   } 
   
   public void Read() { 
      _stream.Read(); 
   } 
} 

This allow to hide that some features are implemented by 
external components, but subtyping problem still persist.   

3.2.2 Transparent composition with interface 
Classes and inheritance are used primarily as code reuse 
blocks,  almost all of the typing tasks are delegated to 
interfaces. 

Introducing IStream interface, both Stream and SerialPort 
can implement IStream: 

public interface IStream { 
  void Read() 
} 
 
public class Stream : IStream { ... } 
public class SerialPort : Device, IStream { ... } 

3.3 Helper class 
Each class provides a minimal set of features, any 
additional features are implemented by helper classes. An 
instance of helper class must be created each time is 
required, usually passing the reference of target class on 
constructor. 

For example, The Stream class may expose only basic 
functions (es. read a bytes block from current position), and 
delegate to an helper classes all advanced tasks:: 

public class Stream { 
   public void Read() { ... }  
} 
 
public class StreamReader { 
   protected Stream _stream; 
 
   public StreamReader(Stream stream) {  
      _stream = stream;  
   } 
    
   public string ReadLine() { ... } 
} 
 
StreamReader reader;  
reader = new StreamReader(new Stream()); 
reader.ReadLine(); 

Since there is a different helper class instance for each 
target class, helper class can have own state.  

3.3.1 Static methods 
To avoid helper class creation, helper methods can be 
static. For example: 

public static class StreamReader { 
   public static string ReadLine(Stream stream) { 
      do_something_with_stream  
   } 
} 
 
Stream stream = new Stream(); 
StreamReader.ReadLine(stream); 

This allows to save memory and to have a quicker access to 
helper functions, but static methods are in-fact equivalents 
to functions inside a namespace. This can affect 
encapsulation principle, since a behavior specific for a class 
is outside the class boundaries itself. Additionally, there are 
following limitation:  

Overriding: Static methods doesn’t allow override: since 
the helper classes can be also used by any subclass of target 
class, could exist a specialized version specific for that 
subclass.1

                                                           
1 We can use method overloading to differentiate function 

based on type. Unless we does not use a dynamic 
dispatch

 

[13] it would fail, for example, when a reference 
of type A holds an object that is subtype of A 



State: Can be expensive keep state between different calls 
on a multithread environment, if source language doesn’t 
support local thread storage. 

3.3.2 Conclusion 
Helper classes can be used to add new class-features when 
source code is not available, or to share functionality across 
different classes. In cases where it can be applied, the use 
of the composition is preferable. If more than one helper 
class works at the same time in the same target class 
unknown interactions between the helper and target class 
may cause side effects.  

Example  In .net framework, text reading is separated from 
binary reading, because text reading can be performed also 
without streams (es, reading from a string).  In such 
situation, if  we have a stream with hybrid content (es 
HTTP), we must use different readers for different content 
type. If text reader use an internal buffer, any read 
operation may get more data than they have been requested, 
exceeding the text content boundaries. If stream does not 
allow to seek, when we switch to binary reader, some 
contents could be lost. 

4. SERVICE MODEL 
The idea to build a class system, using elementary unit, that 
can also works cross-cut to class hierarchy, is popular in 
literature [44][30][53][28]. Even with different names, all 
concern, features, and aspects, perform a kind of 
decomposition, in order to (a) extend and control an 
existing class system (b) to share the behaviors among 
unrelated classes. We want to introduce simply another 
way to obtain in, using the more intuitive concept of 
service. Of course, the concept of service is not new. For 
instance, such approach has been successful applied to 
distributed systems, through the web services (aca SOA 
[32]). In this circumstance, services has been used as a 
strategy to interoperate between different platform. Even 
some component oriented model uses a service-like 
approach, one of that is COM[54].The most interesting 
principle that we can found on COM, is the separation of 
interface from implementation: a program ask and depend 
on abstract interface, without cares about the concrete class 
in which is implemented. More generally, this is known as 
The Dependency Inversion Principle [38]. Implement a 
system based on this principle, may requires several 
infrastructural code, to obtain an high degree of flexibility, 
and avoid code duplication. That is, because  many 
interface would be implemented in a very similar way, and 
unless we use a multiple-inheritance-like (virtual 
inheritance, traits, mixin, etc)  language, a class can reuse 
only the code pertains to one aspect. The key, is to leave 
behind the old class-hierarchical approach, to adopt a more 
effective service-oriented object model.  

4.1 Introduction 
We will introduce services, trying to give a definition of a 
well-know real-world object: what is a table? Is that piece 
of furniture? A car bonnet is a table? We can say that a 
table is an object that can be used as a table, that is an 
object able to provide a large and flat surface. This may 
suggest that the identity of an object depends more to how 
that object is used, rather than from its physical structure. 
In real life, we are all able to readapt a procedure, also 
using objects other than the original ones. 

Example If we want to draw a straight line with a pencil, 
and we do not have a ruler, we may use any object with a 
straight and raised edge. The ruler is just one of many 
possible objects that can provide that service, and not the 
service itself. In different context, ruler may be simply a 
measuring tool, or a piece of plastic. Additionally, you can 
call 'ruler' any object that can assume that role at that time. 

That is because we humans think  “services”, associating to 
a concrete object a particular behavior, and founding on 
that behavior our processes. A frequent misunderstanding 
that occurs in object-oriented model, is to exchange the 
service-provider (class) for the service itself, therefore 
programs, rather than depend on abstract “needs”, depends 
on their implementation. 

Example An application needs to write some logs.  Initially 
we choose to use directly an instance of FileStream, and 
write logs calling its methods. Later we create a specific 
Logger class to manage file open / close stuffs, exposing a 
transparent log functionality. 

Logger class is not the log service, is an entity (any of 
possible) providing a log service. This distinction may 
appear trivial to reader, but will mark the difference 
between our model and existing object model. In summary, 
any programming model that aim to represent objects, must 
take in account following principles:: 

An object is an aggregate of elements, each of which 
confers to it functions and attributes. Same elements may 
be found even in different and unrelated objects. (b) An 
object may provide one or more services, different objects 
may provide same service, and same service may be 
provided by different objects. (c) An object is often used 
for what it does, and not for what it is. A process depends 
on the service that a particular object can provide, and not 
from the object itself.  (d) Is always possible find a new 
way to use an object, and an object can be used even 
differently than its original purpose. 
4.2 Features  
We shown in 2.2, how the same object can assume different 
identities. From now on, we will call each of that potential 
identities, a feature of that object. More general, we can 



define a feature as a capability of an object, a service that it 
can provide, a behavior, that responds to the question “what 
the object can do?”.  

Definition 3.1 Feature f2 depends on a feature f1, if f2 
cannot exist without f1. If feature f2 depends on feature f1 
in one object, then f2 must depend on f1 in all object that 
include f2 

Definition 3.2 Feature f1 is independent from feature f2, if 
exist at least on object that have f1 but not  f2 

Definition 3.3 An object with at least two features mutual 
independent is called aggregate.  

Rule 3.1 If two features are mutual dependant, then must 
be grouped in a single feature. 

Rule 3.2 If exist at least one object that use only a subset of 
a feature, that part must be isolated in a distinct feature.  

4.3 Migrating to services 
Independently of the presence of different features, classes 
expose a flat view of objects, hiding their composite 
structure.  In this section will explain how we can migrate 
from a hierarchical class model  to a service-based model. 
The process consists of four steps: (1) features detection (2) 
class decomposition (3) services extraction (4) class 
composition 
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Figure 2. Sample class hierarchy 

In next example, we will use following formalism: 

𝐴𝐴 ≼ 𝐵𝐵   A is subclass of B 

𝐴𝐴 = {𝐹𝐹1[𝑀𝑀1, . . ,𝑀𝑀𝑛𝑛], . . ,𝐹𝐹𝑛𝑛} A is class, F is a feature of 
class A, M is a public 
member belonging to F. 

𝐴𝐴 → 𝐵𝐵 Feature A depends on 
feature B 

(𝐹𝐹1, . . ,𝐹𝐹𝑛𝑛) ⇒ 𝑆𝑆(𝐿𝐿1, . . , 𝐿𝐿𝑛𝑛) Feature 𝐹𝐹𝑛𝑛  on class-space is 
translated into feature S on  
feature-space, and labeled 
as 𝐿𝐿𝑛𝑛  

𝐴𝐴 ⊸ 𝐵𝐵 A is based on B 

𝐿𝐿@𝑆𝑆 Feature S with label L, on 
feature-space. Or service S 
implemented by L in 
service-space. 

𝑆𝑆[𝐴𝐴1 ⊸ 𝐵𝐵1, . . ,𝐴𝐴𝑛𝑛 ⊸ 𝐵𝐵𝑛𝑛 ] Feature S with label 𝐴𝐴𝑛𝑛  is 
based on Feature S with 
label 𝐵𝐵𝑛𝑛 . 

 
Features detection Each class is decomposed in its 
primary features. Initially, we can simply associate to each 
class a distinct feature. Figure 2 shows this class hierarchy:   

𝐶𝐶2 ≼ 𝐶𝐶1;  𝐶𝐶2 ≼ 𝐶𝐶1;  𝐶𝐶4 ≼ 𝐶𝐶2;  𝐶𝐶5 ≼ 𝐶𝐶2 
That can be initially decomposed in: 

𝐶𝐶1 = {𝐹𝐹1[𝑚𝑚1,𝑚𝑚2,𝑚𝑚3]};𝐶𝐶2 = {𝐹𝐹2[𝑚𝑚4]}; 
𝐶𝐶3 = {𝐹𝐹3[𝑚𝑚6]};  𝐶𝐶4 = {𝐹𝐹4};𝐶𝐶5 = {𝐹𝐹5} 

Applying rule 3.2, some features may be split in more 
parts. Supposing that C2 depended only on m1, C3 
depended only on m2 and m3, and m1 used some private 
members of C1, we are facing to three different features. 
Renaming: 

𝐶𝐶1 = {𝐹𝐹1[𝑚𝑚1],𝐹𝐹2,𝐹𝐹3[𝑚𝑚2,𝑚𝑚3]};𝐶𝐶2 = {𝐹𝐹5[𝑚𝑚4]}; 
𝐶𝐶3 = {𝐹𝐹4[𝑚𝑚6]};  𝐶𝐶4 = {𝐹𝐹6};𝐶𝐶5 = {𝐹𝐹7} 

After we have detect all features, we must find their 
dependences. if a feature A, uses something of feature B, 
than A depends on B. In our case:  

𝐹𝐹1 → 𝐹𝐹2;𝐹𝐹5 → 𝐹𝐹1;𝐹𝐹6 → 𝐹𝐹5;𝐹𝐹7 → 𝐹𝐹5;𝐹𝐹4 → 𝐹𝐹3  
Figure 3 shows the final result. 
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Figure 3. Result of feature detection. 

Class decomposition In this stage, classes are temporary 
decomposed, every feature leaves the classes space, starting 
an independent life. We are now in the feature space, a 
kind of limbo between object-oriented-model and service-
oriented model. All features without any public members, 
are grouped in a single namespace, and any relation of 
dependence between features of the same namespace, 
changed in “is based on”. That because, if a feature does 
not adds nothing of new, means that simply is changing the 
feature on which depends. In our example, only F6 and F7 
are empty, and both depend on F5, therefore F5, F6, F7 
must be grouped together: 



𝐹𝐹1 ⇒ 𝑆𝑆2;𝐹𝐹2 ⇒ 𝑆𝑆1;𝐹𝐹3 ⇒ 𝑆𝑆4;𝐹𝐹4 ⇒ 𝑆𝑆5; 
(𝐹𝐹5,𝐹𝐹6,𝐹𝐹7) ⇒ 𝑆𝑆3(𝐴𝐴,𝐵𝐵,𝐶𝐶) 

And changing also all relations: 
𝑆𝑆2 → 𝑆𝑆1; 𝑆𝑆3 → 𝑆𝑆2;𝑆𝑆5 → 𝑆𝑆4; 𝑆𝑆3[𝐵𝐵 ⊸ 𝐴𝐴,𝐶𝐶 ⊸ 𝐴𝐴] 
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Figure 4. Result of the class decomposition 

Services extraction: this is the most important conceptual 
step: all founded features with unique namespace, will form 
the abstract services (only as interface definition). Each 
labeled feature inside the same namespace, will be a 
particular implementation of that service. Every 
dependence relation must be reinterpreted. Generally,  all 
dependencies between features extracted from two related 
classes, generate an interface (or conceptual) dependence. 
Instead, all dependencies between features extracted from 
the same class may generate an implementation (or 
concrete) dependence2

Figure 5

. In our example S1, S2, S3, S4, S4, 
will be the services. A, B, C three different implementation 
of S3 service. The feature S1, S2, since are originated from 
the same class, will be in a concrete dependence, all others 
in a conceptual one. Final result is shown in  
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Figure 5. Result of service extraction 

Class composition: All service implementations extracted 
from previous step, can be used as a buildings blocks to 

                                                           
2 This distinctions will be clarified in next paragraphs. 

compose the new classes. The composition is valid only if 
all dependences are satisfied. For example: 

𝐶𝐶4 = {𝐼𝐼2@𝑆𝑆2[𝑚𝑚1], 𝐼𝐼4@𝑆𝑆3[𝑚𝑚4], 𝐼𝐼5@𝑆𝑆4[𝑚𝑚2,𝑚𝑚3]} 
Class C4 is functionally identical to the old one, as is 
shown Figure 6  

m2

m3
I5 S4

m1 I1I2 S1S2

I4m4 S3

 
Figure 6. Equivalent of class C4 in service-model 

In the service-oriented model, say that “service B depends 
on the service A”, can mean: 

(a) If You can do (a generic) B, you can also do (a 
generic) A 

(b) To do B (in that way), I need to use (a generic) A.  
(a) establishes a conceptual dependence between services, 
something that is always true, regardless of the 
implementation.  (b) establishes a concrete dependence, 
something that is true only for a particular implementation.  

Example “A list is enumerable”, this is conceptual and 
always true. We can say that “the list service depends on 
Enumerator service”, or to be more colloquial that “if you 
act like a list, you must also act as an enumerator”.  
“A list is sortable”, is not always true, some lists can be 
read only, or contains element on which sorting cannot be 
applied. 

The point (b) can be also read as: 
(b*)  If you can do (a generic) A, you can also do B (in 

that way) 
We will define (b*) as “inversion of dependence”, the 
ability of an object providing a service, to “inherit” all 
services-implementation that depend on it.  
In object-oriented model, inheritance does not take in 
account this important distinction, with the result that each 
conceptual dependence is reflected also in a concrete 
dependence. Say that “B is a specialization of A”, does not 
necessarily imply that both must implements shared 
behavior in the same way. In fact, using virtual functions 
and polymorphism, B can alter the behavior of A, but this 
approach can generate code duplication3

                                                           
3 A changes made overriding a superclass method, may be 

suitable also for classes belonging  to a different 
inheritance axis 

.  



In conclusion, what today was “class B inherit from class 
A” becomes “service B depends on (require) service A” or 
“service B can be provided using A” 

4.4 Service based design 
To design a system in a service-based environment, is not 
necessary to apply the procedure described in 4.3. We can 
easy decompose our application domain answering to this 
three questions:  

1. What I need to do?  

2. In which way I can obtain it?  

3. Which entity can provide such service in that 
way?  

Answer (1) produce services, (2) service dependence and 
implementation, (3) classes. 

A conceptual service is represented by an interface, so we 
can use the term interface in place of that one of service. 
For each conceptual service, can exists many possible 
control interface, and many way to implement each 
interface.  

Example a stream is an abstract service through which read 
and write data. Interface IStream with methods Read and 
Write is a way to control such service. FileStream is an 
object that provide (implement) IStream service.  

In object-oriented model, interfaces can be implemented 
only inside a class, and a class can implement one or more 
interfaces. Since the unit of reuse is the class, is not 
possible to share an interface implementation between 
classes belonging to different inheritance axis. 
In the service-oriented model, a service implementations, 
acts as building blocks, and the classes as a place (not the 
only one) in which aggregating such blocks,  so that same 
implementations may be shared among different classes. As 
constraint, a service implementation can be used inside a 
class, only if target class provides also all the dependent 
services4

A key feature of this model is that classes cannot inherit, 
but simply acts as container on which services can be 
realized and compounds.  

 .  

4.5 Composition samples 
Figure 7 shows some composition schema, taking 
advantage of service composition: 
Schema I: (double implementation) B implement interface 
I1. A implement I2. Class expose both I1 and I2.   

                                                           
4 This is not properly true, a more precise definition is 

given in section 5 

Schema II: (single local dependence) B implement 
interface I1 and require interface I2. A implement I2, so 
can satisfy B requirement. Class expose both I1 and I2.   

Schema III: (private implementation) Similar to Schema 
II, except that class doesn’t expose interface I2, that is used 
only to satisfy B requirement. 

Schema IV: (external dependence) Class C2 implement I1 
by B, but B require interface I2. Class C1 implement I2 by 
A. Class C1 is parent of C2, so can satisfy B requirement. 

Schema V: (mutual local dependence) A implement I2 and 
require I1. B implement I1 and require I2. Both 
requirement can be satisfied each other. Class expose both 
I1 and I2. 

Schema VI: (shared requirement) C implement I3 and 
require I2. B implement I1 and also require I2. A 
implement I2, so can satisfy B and C requirement. Class 
expose only I1 and I3. 

Schema VII: (double local dependence) C implement I1. A 
implement I2. B implement I3 and require both I2 and I1. C 
and A can satisfy B requirement. Class expose all I1, I2 and 
I3. 

Schema VIII: (interface dependence) Interface I2 depends 
on I1. A can implement only I2, creating an implicit 
requirement on I1. A expose both I1 and I2, but I1 is 
implemented through B provided by class C 



 
Figure 7. Examples of service composition 
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5.  “S” LANGAUAGE 
This section is only an overview of ‘S language, showing 
mainly its aims and purpose, without giving a formal or 
rigorous definition. ‘S will be introduced in this paper, to 
give to the reader a reference language to better understand 
the service model potential. The first goal of ‘S design, is 
the ability to compile a code that is fast, and with a low-
memory-usage, in order to be executed even in a embedded 
system or a microcontroller. Some theoretical features 
could be removed due their cost, but any decision can be 
taken only after the analysis of the profiling results on real 
world applications. Many features, statements and 
constructs are inspired from existing languages (such as 
c++,  java, c#, and so on), therefore will be used without 
giving any definition: only the ones that diverge from 
status-quo will be explained and defined. 

Implementation
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Figure 8. Overview off principal language construct, and 
their relations. The gray blocks defines also a context.  

5.1 Hello world 
An overview of the main ‘S constructs and their relations, 
is shown in Figure 8. Nevertheless, we want to start 
introducing ‘S, using the evergreen “hello world” sample:  

require IModule 
 
on IModule.load() 
{ 
    require IConsole as c;  
    c.WriteLine(“Hello world”); 
} 

By require statement, we are asking to the system for a 
particulat service. All requests declared in global scope, are 
resolved on program startup, and generally are directed to 
those services consumed in several parts of the program. 
IModule service is implemented by default from compiler, 

and rapresent the program5

5.2 Type 

. Subsequently, it was written an 
event handler for Load event of IModule service. This event 
will be raised by system, and can be considered in fact as 
the entry point of the program. Inside the event handler, 
was required the console service (IConsole), and using the 
as clause, was specified an alias through which get access 
to this service. Finally was invoked the WriteLine method 
of the console service, in order to emit the string “hello 
world” 

Similar to c#, there are two main categories of types: value 
types and reference types. A schema of all types categories 
is shown in figure Figure 9 

Object
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Figure 9. Summary of types defined in ‘S 

Value types are always passed by value (deep copy), and 
are usually stack allocated. To this category appertains 
Primitive Types (int, bool, float, etc), struct, enum and 
user-defined types. The only exception is for the string 
type, that is considered a built-in type, but is passed by 
reference. 
Reference types, are always passed by reference (Shallow 
copy), and are heap allocated. To this category appertains 
classes and interfaces. Both the ‘reference passing’ and the 
‘heap allocation’ they allow to a class type to be more 
extensible than a value type, because its memory size may 
be  unknown at compilation time.6

5.3 Variable and Function 
 

We can declare a variable in any point of program, using 
keyword var. If a variable is initialized on declaration, the 
type can be omitted (a), since it can be inferred from the 
assignment expression.  

var x : int32; 
var y : int32 = 10; 
var z = 10;                                    (a)  
var z1;      //illegal 
z = “text”;  //illegal, z is an int32. 

Also a function can be declared in any point of program, 
even inside a function itself. In this release, a function does 

                                                           
5 By program we mean this particular module, because a 

program can be composed using different modules. 
6 This advantage make sense only using certain compilers 



not define a type. A function can require input arguments, 
and optionally can return a value. A function can be 
overloaded, so can exists many function with same name, 
but different arguments7

function ToHex(value : int32,  
               digitCount : int32 = 8) : string 
{ ... } 
function Reboot() { ... } 
var result1 = ToHex(10);                        
var result2 = ToHex(10, 4);                     

. An argument can be optional, and 
in this case a default (constant) value must provided. All 
arguments that follow an optional argument, must be 
optional as well. A function must be called using 
parenthesis, and passing all not-optional arguments, 
separated from comma, in the same order on which they 
appear into the function. 

5.4 Interface 
The central point of any program written in ‘S, are the 
interfaces. An interface describes a service, and a class is 
composed by service implementations.  

public interface IStream { 
   function Close(): 
} 
public interface IInputStream : IStream {      (a) 
   property IsEof : bool; 
   function Read(buffer : byte[],  
                  count : int32) : int32; 
} 
var x : IInputStream; 
x. Close();                                    (b) 

An interface can declare many prototypes of functions, 
properties, and events. An interface can depend on more 
interfaces (a). That means that the class8

assert IObject : IFormattable;  

 in which interface 
is implemented, must also implement all dependent 
interfaces. Due to this constraint, is possible to have a 
direct access to all members of dependent interfaces, as if 
they were its own (b). if interface A depend B, and B 
depend on C, then A depend on C. To create a conceptual 
dependence for an already defined interface, is possible to 
use assert statement: 

The module that declare assertion, must provide an 
implementation for all type that directly, or indirectly 
implement involved interface.  

                                                           
7 With conditional function, we may have more than one 

function with the same prototype, this we will explained 
later. 

8 The class is not the only one structure by witch implement 
an interface 

5.5 Base implementation 
Is possible to share a full or s partial interface 
implementation, using the base. A base is not a type, so 
cannot be directly instantiated or referred.  

public base BaseStream : IStream { 
   var _closed : bool;                        (a)    
   final function Support() {... }            (b) 
   public function Close() { 
     if (!_closed) 
       _closed = true;  
   } 
} 
public base EnahncedStream : BaseStream {     (c) 
   public override function Close () {        (d) 
      Support();                              (e) 
      base.Close(); 
   } 
} 

A base can inherit from an existing base (c), and in this 
case, all the well-known features of single inheritance are 
available9. Is possible to declare any support function or 
state (a)(b),  however, those members will be accessible 
only from the base, or from a base that inherits from it (e). 
All the functions / properties can be overridden by default. 
In order to override a function, the override modifier must 
be specified (d). To disable this feature, the base class can 
declare the member as final (b). If a support function is 
declared as private, then it will be not accessible to its 
superclass10

5.6 Class 

. All interface members must be publics. 
Similar to the implement statement, also the base statement 
can implement only one interface. If  this interface has 
some dependences, it will be possible call and use such 
member as if they were its own. The compiler will ensure 
that all dependences will be always resolved. 

The first place on which an interface can be implemented, 
is a class. A class can implement multiple interfaces, and 
for each interface, can select the base from which starting 
from. The class must implement all member of each 
interface that have not yet been implemented, and must also 
implement all dependent interfaces. 

public class File { 
   public construct(name : string) { ... }     (f) 
   public implement IInputStream  
                use BaseInputStram;            (a) 
 
   public implement IStream{ 
      public function Close () { ... } 
   } 
   public function Close() { ... }             (b) 
}  

                                                           
9 Inspired to that one of c# 
10 Will be used the terms superclass / subclass improperly 

referred to the base implementation hierarchy 



var x : = new File(“foo.txt”);                 (g)         
x.Close();                                     (c) 
x.IInputStream.Close();                        (d) 
(x as IInputStream).Close();                   (e) 

All properties not explicitly implemented, will be auto-
implemented by compiler, by declaring a private variable 
on which store / retrieve the state. If implement does not 
declare any member, the block {} can be omitted (a). Is 
possible to get access to an interface member in two way:  
implicitly (c) as if it were a direct class member of the 
class; explicitly (d), by specifying the interface name. A 
public function that is declared into the class, has the 
precedence on any interface members (b). In this case, or in 
the case of ambiguous member access (similar prototype in 
two distinct interface), is required an explicit access to 
resolve the ambiguity (d). Implementing an interface as 
protected, all members will be protected too, except those 
explicitly declared as public. Same semantics for public 
(all public except those  declared as protected). A protected 
member is accessible only explicitly. If all member of an 
interface are protected, an explicit access to this interface 
will be no more available. However, is still possible 
execute a cast to that interface (e). An interface member 
cannot be private, however, whole interface 
implementation could be. A private interface will be never 
accessible, even with a cast. If an interface is implemented 
as private, also all interfaces that depend on it must be 
private. A class can declare optionally a constructor using 
constructor keyword (f).  Is possible to create a class 
instance, using new operator (g). 

5.7 Context 
The class is not the one place on which implement a 
services. By implement statement, is possible to implement 
a service in different places, called contexts. A context can 
be defined as a place in which an interface can be 
implemented and required. The class, is only a particular 
kind of context, that can be “replicated” in multiple copies.  

//global context 
public implement ITextWriter use Console;      (a) 
public class Console { 
  //class context 
   public implement ITextWriter { ... }        (e) 
} 
public function Foo() { 
   //function context 
   public implement ITextWriter { ... } 
   Foo2();                                    (c)      
} 
public function Foo2 () { 
   require ITextWriter;                       (d)  
} 
on IModule.load() { 
   require ITextWriter;                       (f) 
   Foo();                                     (b) 
} 

Above a  summary of all defined contexts, that are global 
(the space outside any defined structure), function, and 
class.  

Is very important understand the meaning of implement 
statement. When is declared in global or function context, 
is not simply a definition. More than define an interface 
implementation, it define a rule, asserting that that service 
must be implemented in that way. (a) must be read as “if 
someone requires ITextWriter, uses Console class to 
provide it”.  The contexts form a stack, which has global as 
its base.  Every function call cause the related context to be 
pushed into the stack, and then popped back when function 
returns. 

public context ConsoleContext {                (a) 
   public implement ITextWriter use Console;   (b) 
} 
on IModule.load() { 
   //global context 
   enter ConsoleContext {                      (d) 
      //UDC context 
      require ITextWriter;                     (c) 
      ITextWriter.WriteLine(“hello”); 
   }   
   //global context 
} 

By user defined context (a) (UDC), is possible to create a 
set of configurable environments, on which declare the  
default implementation (b) for a group of services. UDC 
have a similar role of a singleton or static class, but 
contrariwise, its content is not directly accessible. Prior to 
use any service or variable declared into an UDC, you must 
enter in such context. By enter (d) keyword is possible to 
declare a code block that runs inside a specific context. 
After entering, the old context is pushed into the stack, and 
the specified UDC becomes the current one. That means 
that any service request (c), until we are inside, will pass 
through the UDC. There are no limit in nested enter call, 
even if they affect the same context several times. 

5.8 Require 
By require keyword is possible to ask for an interface, in 
any point of program. The required interface will be 
accessible as any normal variable, with the same identifier 
of the interface. Is possible to define an alias, using the as 
keyword. A request is resolved once require instruction 
enters in the scope, and not in the position in which is 
declared. All requirements declared in the global context, 
will be resolved once the module and all its dependences 
has been loaded. All requirements declared in a class or 
implementation context, will be resolved on construction. 
All requirements declared in a function context, will be 
resolved at each call. Due to is state-like purpose, is not 
possible declare a requirement inside  a property. Normally, 
the request lookup begins by the requiring context,  and 
then passes down through the context stack, until it reaches 
that one that can satisfy it. Is possible to alter this behavior, 



by specifying the reference context. Possible values are 
local (only local context), global (only global context), 
ancestor (any parent context but not local), or an identifier 
of any user define context.  

public class Console { ... }                    
public class Debugger { ... } 
 
public context ConsoleContext { 
   public implement ITextWriter use Console;  (i2) 
} 
 
public class File { 
   public implement ITextWriter { ... }       (i1)   
   public constructor File() { 
      require ITextWriter;                    (f1)  
      require local ITextWriter;              (f2) 
      require ancestor ITextWriter;           (f3) 
      require global ITextWriter;             (f4) 
      ...                                     (b) 
   } 
} 
 
public implement ITextWriter use Debugger;    (i3)  
 
on IModule.load() { 
   require ITextWriter;                       (g1) 
   require Console ITextWriter;               (g2) 
 
   enter ConsoleContext { 
      require ITextWriter;                    (c1) 
      require ancestor ITextWriter;           (c2)  
      require global ITextWriter;             (c3) 
      var file = new File();                   (a)    
   } 
} 

The runtime context stack in (b), after the constructor call 
in (a) is global→Console→File. (f1)(f2) are statically 
resolved in (i1). (f3) is resolved at runtime in (i2) (the first 
ancestor implementing ITextWriter is Console context). 
(g1)(c3)(f4) are statically resolved in (i3). Even (c2) is 
statically resolved in (i3) (its parent is global, and does not 
depend on call stack).  (g2) is resolved statically in (i2) 
Any requesting interface marked as local, it will be also 
accessible in the calling context using this accessor. This 
make sense, because local constraint ensure that the 
implementation will be performed in the same context in 
which the request was made. Even in this case, any 
ambiguity can be resolved by specifying the interface 
name. 

require local IConsole; 
on IModule.load() { 
    WriteLine();                               (a) 
    this.WriteLine();                          (b) 
    IConsole.WriteLine();                      (c) 
} 

(a) due to the local modifier, WriteLine of IConsole is 
mapped in local context (this can be omitted). The 
compiler will ensure that all requests will be resolved at 
runtime, by performing a static check at compilation time. 

That means that must exist at least one context, statically 
ancestor of the requesting context, that is implementing 
requested interface. The search is extended also at global 
context of all dependent modules. Is possible to ask for a 
new instance of the service (not shared with anyone else), 
using a new keyword. For the same principle, is also 
possible declare a new instance of an object, specifying 
only the required interface. Even when we are 
implementing an interface, is possible to specify as use 
clause, the context in which get the implementation by 
which starting. 

require new IConsole; 
var x : new IConsole; 
public class TextBox { 
   public implement IWidget use new global {   (a) 
   }    
} 

(a) Means that the base implementation of IWidget must be 
retrieved from global context, that must be return a new 
instance; 

5.9 Extension 

Public extend class File {                     (a) 
   public override implement IStream           (b) 
                         use base { ... }      (c) 
   public override implement ITextReader  
                         use BaseTextReader {  (d) 
   } 
   public implement IItem {... } 
} 
public extend type String {                    (e) 
   public implement IComparable { ... } 
} 

By extend keyword (a)  is possible to alter a type defined 
into a compiled module on which we are dependent. 
Extend can be applied to a class, primitive type and UDC. 
To override an existing implementation, the override 
modifier (b) must be specified. When we are overriding an 
existing implementation, we can choose to reuse the old 
one as base, or starting a newly implementation (d).  To use 
the old as base, the base keyword must be specified as use 
clause (c). Inside an extend block, is possible to declare 
any new additional function, variable or implementation. 
However, is not possible to override existing public 
functions. Is also possible use extend, to implement an 
interface on a primitive type (e). As constraint, all declared 
structures must be stateless.  Any extension do not alter the 
type-safety. Even changing the implementation of some 
interfaces, the public semantic do not changes. Every 
dependence can be only at interface level, and all different 
implementations, share and expose the same public view. 
To block any extension, is possible to specify the final 
keyword. At class level, means that the class cannot be 
extended (either by adding or overriding an existing 
implementation). At implementation level, means that only 



that particular implementation cannot be overridden, and so 
for the function level. In addition to its protection purpose, 
final keyword allows the compiler to produce a more 
optimized code, reducing the amount of v-table request. If 
more than one module overrides the same interface of the 
same type, the order of the dependencies will establish the 
priority. Is possible to apply an extension of an existing 
type, only If no instances of that type has been created, 
before the extension module was loaded. 

Public class File {                            (e) 
   public implement IInputStream {... } 
   public implement ISeekable {... } 
} 
Public implement ITextWriter                   (c) 
             for IInputStream {                 
   require local ISeekable; 
}  
public delay implement ILogger                 (b) 
                   for ITextWriter { 
  public function Log (msg : string,  
                       level : LogLevel) { 
     WriteLine(Now() + “:(“ + level + “) ” + msg); 
  } 
} 
var x : = new File(); 
x.Log(“Hello”, LogLevel.Info”);                (d) 
var y : ITextWriter = x; 
y.Log(“Hello2”, LogLevel.Info”); //error       (a) 

A more powerful extension mechanism can be obtained 
using the implementation injection. With this technique, is 
possible to spread an interface implementation, in all 
context that implement the target interface. The instruction 
is “implement A for B”, that means “if you implement B, 
then you will receive this implementation of A” . In the 
example, (c) say “if you are an IInputStream and also 
implement ISeekable, then you will inherit this 
implementation of ITextWriter”. File class (e) satisfy 
those requirements, so automatically will be injected with 
this ITextWriter implementation. Now File is an 
ITextWriter. Similar, (b) say, “if you are a ITextWriter, 
then you will inherit this implementation of ILogger”. Now 
File is also an ILogger, so is possible to invoke Log 
method from a File instance (d). Similar for the local 
requests, all member of target interface will be accessible 
inside the implement block. Anyway, such extension will 
be applied only if the target context does not already 
implements this interface. To give the priority to the 
extension, must be used override modifier. Using the 
delay (b) clause, the extended interface will be loaded in 
target type, only after first access. This may fragment the 
heap, but avoids massive loading of rarely used services. 
The implement for statement does not alter the context 
and must be declared in global scope. If they was declared 
some local requirements, only the contexts that satisfy all 
constraints will inherit the service. If context is marked as 
final, then the extension will be ignored.  Since that many 
types could not receive the extension, the access to the 

newly implemented interface is not allowed from target 
interface (a). However, is possible to declare an assert 
constraint, to ensure that all target types implement the 
injected interface. 

assert ITextWriter : ILogger 

5.10 Event 
An event in ‘S is very similar to that one of c#, and can be 
defined as a notification mechanism to inform some actors, 
called listeners, that something is changed or happened.  
An event declaration is similar to a function declaration, 
except that an event cannot have a body, or return type. 
Events can be declared only at interface level, with 
keyword event. Only that one that implement this interface 
can raise that event, using raise keyword. Is possible to 
attach many listeners (also called event handlers). When an 
event is raised, all event handlers will be executed, in the 
order under which attach was made. There are two ways to 
attach an event handler. With on keyword, to declare a 
local-scoped event-handler. In this case, target event must 
be directly provided by a variable (or requirement) declared 
in the same (or parent) scope of event handler:  

var car : Car;  
on car.Move() { ... }                          (a) 
on car.Engine.Start() { ... } //error          (b)  

Regardless on declaration position, attach occurs any time 
that the event-source variable changes its value. Prior the 
execution of any attach, if the event handler is already 
attached to a different object, detach will occur. The detach 
will also occurs when either source object or event handler 
become out of scope. The event handler (d) must provide 
the same arguments declared in the event prototype (e), 
except for the first one, that must be a reference to the 
interface in which the event is declared. 

public interface IJob { 
   event Started();                          (e) 
   function start(); 
   property Name : string; 
}   
public class Job {  
   public constructor(name : string) { 
      Name = name; 
   } 
   public implement IJob { 
      public function Start() { 
         raise Started(Now()); 
      } 
   } 
}  
require IConsole; 
public function Sample() {   
   var j : IJob; 
   j = new Job(“job 1”);                     (a) 
   j.Start(); 
   j = new Job(“job 2”);                     (b) 
   j.Start();                                      
                                             (c) 



   on j.Stared(sender : IJob) {              (d) 
      IConsole.WriteLine(sender.Name); 
   } 
} 
//output 
“Job 1” “Jbo2” 

(a) event handler j.Stared is attached to the object job 1. 
(b) j.Stared is detached from the object job 1, and 
attached to the object job 2. (c) j.Stared is detached from 
the object job 2, because both j and j.Stared are out of 
scope.  

When is necessary to let an event handler surviving, even 
when the source variable changes value or exit from the 
scope, is possible to invoke the attach and detach 
instructions. 

function OnJobStarted(sender : IJob) { ... }   (a) 
function Sample(jobs : Job[]) 
{ 
   foreach (var job in jobs) 
     attach OnJobStarted to job.Started        (b) 
} 

Attach (b) accepts any function with the prototype 
compatible (a) to the event declaration. Also in this case, 
first argument must be a reference to the declaration 
interface. Using attach, there is no limitation on the event 
source member.  

5.11 Generics 
Generic types are implemented on the principle of those of 
C#, with similar syntax. Can be generic a class, an 
interface, a base or a filter. Currently, there is no support 
for covariance / contravariance, or for generic functions. 

public interface IList<T> where T : IComparable { 
    function Insert(item : T); 
} 
public base BaseList<T> : IList<T> where T { ... } 
public base IntList : BaseList<int32> {... } 
 
public class DoubleList<T> where T : IComparable { 
   public implement IList<T> use BaseList<T> { 
   } 
   public implement IList<int32>  
                use IntList  
                 as SecondList {               (a) 
   } 
} 
var x = new DubleList<string>(); 
x.Insert(“foo”); 
x.Insert(1); 
x.IList<string>.Insert(“foo2”); 
x.SecondList.Insert(3); 
var x = new DubleList<int32>(); //error        (b) 

By where clause, is possible constrain the generic 
parameter to implement certain interfaces. Are also valid as 
constraint value (only a value type) or class (only a 
concrete class). For a better readability of the interface 
identifier, during an explicit member access,  is possible to 

specify an alias (a). Is possible to implement the same 
generic interface into the same class, providing differ 
generic arguments (b).  

5.12  Conditional Function 
Is possible to declare two identical functions in the same 
scope, specifying a dispatch condition. Such functions must 
be marked with conditional keyword, and the condition 
can be expressed through where keyword. The condition 
can be any boolean expression evaluable in the function 
scope (the scope in which function is declared).  

conditional function Format( 
            value : int32 
            format : string) : string  
where (format == “x”) { ... } 
 
conditional function Format( 
            value : int32 
            format : string) : string  
where (format.StartsWith(“b”)) { ... } 
 

If many functions satisfy the dispatch condition, only the 
first one will be called, in the order under which were 
declared. Once a function is marked as conditional, , all the 
instances of such function must be also conditional. A 
conditional function can’t be overridden, but can be 
overloaded.  

5.13 Member Function 
A global function can be mapped as a member of specific 
type or types. This can be useful when a function is not 
specific for a particular type, but works indistinctly with 
both, or to add some public shared function to an interface, 
that can be suitable regardless of the implementation. 

function Print : ( printer : member IPrinter,  
                  document : member IDocument, 
                     pages : int32)  
{ ... } 
var x : IPrinter; 
var y : IDocument; 
x.Print(y, 1); 
y.Print(x, 1) 

Calling the function from the target type, the argument with 
its references will be hidden. More formally, if function A 
declares (x, T1, T2, y) arguments, and is mapped on type T1 
and T2, then T1 will have A(x, T2, y), and T2 will have A(x, 
T1, y).  
If member modifier is specified in return type, the function 
can be used as constructor of specified type11

                                                           
11 Only with class or struct type 

. In this case, 
the function acts as a normal constructor, and this 
keyword refers to the instance of the newly created object: 



function VerticalLine(pos: PointF,  
                      len: float) : member Line { 
   this.x1 = pos.x; this.y1 = pos.y; 
   this.x2 = pos.x; this.y1 = pos.y + len; 
} 
 
function Origin() : member Point { 
   x = 0; y = 0; 
} 
 
var l : Line; 
l = new VerticalLine(new Origin(), 10); 

VerticalLine is not a subtype of Line, is simply a named 
constructor. This technique can be used when constructor is 
ambiguous, and the behavior cannot be deduced by 
arguments.  An hypothetical HorizontalLine, would be 
declared with the same arguments, but different meaning, 
and the standard constructor it could not be used. 

5.14 Type conversion 
By conversion keyword, Is possible to declare a user-
defined type conversion. The scope in the conversion 
function, is that one of source type that must be converted. 
Converted value can be returned using return instruction 
(a). A conversion, can be declared as implicit or 
explicit. Implicit conversion, will be automatically 
performed by compiler. Explicit conversion, instead, must 
be explicitly declared using the cast operator. 

public struct Fraction  
{ 
   public constructor(n : int32, d : int32) { 
     Num = n; Den = d; 
   } 
   public var Num : int32; 
   public var Den : int32; 
} 
public conversion implicit Fraction to float { 
   return Num / Den;                           (a) 
} 
var f : float = new Fraction(10 / 5); 

Declaring a conversion function, in fact it means defining a 
subtyping relation between involved types. Any high-cost 
conversion must be never declared as implicit, the 
programmer must be always aware of what he is going to 
do. 

5.15 User defined type 
By type keyword, is possible to define new types, based on 
an existing primitive type. This help to introduce different 
behavior associated to that particular data type, normally 
represented with a primitive type (e.g. a percentage, 
currency, color, etc).  

public explicit type Email : string:           (d) 
public type Currency : float  
{ 
   public override implement IFormatter {      (e) 
      public function Format() : string { 

         return “€. “ + Round(this, 2);   
      } 
   } 
} 
var x : Currency = 10.126;                     (a) 
var y : float = x;                             (b) 
var z : object = x;                            (c) 
var k : Currency = y;                          (f) 
IConsole.Write(x); //€ 10.13 
IConsole.Write(y); //10.126 
IConsole.Write(z); //€ 10.13 

However, we must always be aware of the meaning of this 
operation. A primitive type comes with no runtime type 
information. Casting a primitive type to an object (or any of 
its implemented interfaces), cause a box operation to be 
involved, so that any type information will be preserved 
(c). Contrary, passing among two different primitive types, 
it cause the type-qualify to be loose (b). An user defined 
type cannot change the physical nature of its base type, so 
is not possible declare any state information. However is 
possible to implement a stateless interface (e). An user 
defined type is not strictly a subtype of its base type, both 
are interchangeable (b)(f).  However, due to the type 
loosing issue, is possible to specify the explicit qualifier 
during type definition (d), so that only explicit cast will be 
permitted (except in literal assignation).  

5.16 Conclusion 
In conclusion, we want to propose our solution for the 
classic AST problem [61][63][65][31][37][45]: 

public interface IEvaluable<T> { 
   function Eval () : T; 
}   
public interface IExpression : IEvaluable<int>; 
public interface ILeftRight : IExpression { 
   property Left : IExpression; 
   property Right : IExpression; 
} 
public interface ILiteral<T> : IExpression { 
   property Value : T; 
} 
public class Literal { 
   public implement IExpression; 
   public implement ILiteral<int>; 
   public implement IEvaluable<int> { 
       public function Eval() : int { 
          return Value; 
       }  
   } 
} 
public class Plus { 
   public implement IExpression; 
   public implement ILeftRight; 
   public implement IEvaluable<int> { 
       public function Eval() : int { 
          return Right.Eval() + Left.Eval(); 
   } 
} 

With service model, we can take advantage of any existing 
implementation of any declared interfaces, even if in this 
example we do not use any base implementation of 



IExpression or IEvaluable. A dynamic extension is 
possible even without source code: 

assert IExpression : IFormattable; 
 
public interface IFormattable { 
   function Format() : string; 
} 
public extend class Literal { 
   public implement IFormattable { 
      public function Format() : string { 
         return Value; 
      } 
   } 
} 
public extend class Plus { 
   public implement IFormattable { 
      public function Format() : string { 
         return “(“ + Right.Format() + “+”  
                      Left.Format() + “)” ) 
      } 
   } 
} 

6. RELATED WORKS 
Our works cover mainly three topic (a) code reuse (b) 
modularity and extensibility (c) implementation 
independence. Most of related works, instead, cover only 
one of this aspects, so could be hard an effective 
comparison. With all trait[15][6], mixin[10][11][26][2] 
[23], single / multiple inheritance, is not possible modify an 
existing type, any new feature can be declared only by 
defining a new type. Additionally the presence of many 
inheritable / reusable structures, laid a question: what must 
be expressed by means of traits or mixin? and what, 
instead, using specialization? In ‘S classes cannot inherit, 
and is available an unique mechanism of code reuse. In ‘S 
we can choose to apply an extension to an existing class, or 
to a family of classes (all that one implementing a certain 
interface), or even to define a new class, reusing the 
elementary building blocks that compose the old one. In 
both traits and mixins, the connection with the host class is 
performed by abstract methods, but different units may 
require a method with the same signature but different 
meaning. Additionally mixins must be linearly applied, and 
traits do not allow state. We will not argue anymore about 
this, the literature[47][37][31] is rich of more accurate 
analysis about the weakness of each of this methods. ‘S 
does not require any mechanism to merge or intersect its 
base components, each interface defines a distinct behavior, 
and composition is linear. If two interfaces define a 
member with the same name, we can simply disambigue by 
specifying the name of the interface we are referring to. 
Aspects[44][39] are substantially different from services. 
They operate as observer, and provides a solution for 
problems that are cross-cut to the classes (es. Logging). 
Cannot be considered neither a unit of reuse nor a service, 
even if they can be used as they would be. Similar (but less 
powerful) results experienced with aspects, can be achieved 
using ‘S filters. Existing languages do not provide a built-in 

support to realize the ‘inversion of dependence’[38]. 
However, using some design pattern we can obtain similar 
results (for example, we could take advantage of  c++ 
template and smart-pointers[1]). Multiple inheritance, 
suffers of diamond (duplicated base class). This may cause, 
duplication of state, problems during the initialization 
(multiple or ambiguous call to a base constructor),  and the 
existence of multiple paths to reach a superclass method. 
Several technique was proposed to avoid this issues, such 
as linearization[3][17], renaming[40], virtual 
inheritance[18]. C++ virtual inheritance can handle any 
composition rules, without exceed on infrastructure.  Base 
initialization problem expressed in [37], can be solved by 
using a specific init functions in place of the constructor. 
For instance, using the abstract class as interface, and 
expressing both the requirements and implementation by 
means of multiple inheritance, then we can obtain a 
composition power, comparable to that one of 'S. However, 
there would not be any formal distinction between what is a 
conceptual requirement, and what is instead an extension. 
In such situation, a class is allowed to “implement” an 
abstract function, even if its purpose was to be 
implemented elsewhere. CZ[37] suggests a solution that 
can resolve that ambiguity, by allowing to distinguish an 
extended class from a required one. Regarding single 
inheritance, a number of design patterns[27] (Visitor, 
Delegation, Observer, Abstract factory, etc) can be applied 
to obtain similar flexibility of ‘S, however the pattern 
existence itself can be view as a lacks of target language: 
the inability to express a particular design problem with 
any built-in language construct. For the same reason we are 
using an OO language when we think “objects” (even such 
model can be fully expressed using ‘patterns’ in languages 
like C[56]), we should use a specific language to think 
“services”. Our services model have no substantial 
difference with any existing component model. However, a 
component model covers a wide range of problematic, such 
as the interoperability between different languages, inter-
process and network communication, that 'S does not cover. 
Compared to COM[54], ‘S has the advantage to keep a 
local and dynamic interface-implementation catalog, 
instead of a global one. Additionally, has the capabilities to 
extend or change existing services, and to propagate an 
interface implementation, without edit source code. A 
method-based extensibility similar to ‘S member functions 
is available also in Open classes[13], expander[64], and 
extension methods[41]. All adopt similar approach, and all 
suffer of the inability to declare state. Multijava[13] and 
CZ[37] languages, provides a mechanism for dynamic 
dispatching, similar to conditional function of ‘S. 
Nevertheless, ‘S allow to express the dispatch condition by 
using expressions that can evaluate even external 
conditions. Other approaches to extensibility are virtual 
classes[35], nested inheritance[45], or scala[49] abstract 
type. All this technique allow a massive extension in a set 
of correlated and nested classes (family 



polymorphism[20]). One advantage is that each extension 
lays under a special class that “host” all extendible classes. 
Any extension is not invasive, and we can always choose to 
use the old class family instead of the extended one. The 
most notable model diverging from classic OO, is that one 
prototype-based. First in self [62] and then other languages, 
such as ECMAScript[25], the prototypes offer a natural 
way to think objects. All is an object, and all object 
instances are created by cloning an existing object (the 
prototype). Newly created object, can diverge from its 
original copy and define new behavior or state. However, 
that imply a dynamic type system. The world of dynamic / 
duck typed (e.g. ruby [24]) languages, allow a flexibility 
and expressiveness that many static and strongly typed 
approach does not. However, we will not make any 
comparasion with such languages, because simply are 
based on different philosophies. ‘S is born to be fast. A 
dynamic system cannot be realized without a cost. Most of 
the member access must be dynamically dispatched using a 
name dictionary, and the memory slot holding a dynamic 
typed object at runtime, must contain all the structure 
necessary to self-describe the type, and even, to modify it. 
Over the performance issues, there is a number of 
advantages in static /  strongly typing, such as reduce 
runtime errors, simplify the debug and coding,  help the 
development tools to introduce more facilities (e.g. 
Intellisense). A static-typed prototype-based system was 
advanced in [31]. In such model, there is no more 
distinction between objects and types. All is an object (or a 
type), even the literals are cloned from its base type (e.g. 
‘3’ is subtype of int). New objects can be defined, also by 
combining more than one prototype. Similar to ‘S, 
prototypes provides a simple and unique mechanism for 
code reusing, and maybe they can be considered the most 
valid alternative to our approach. 

7. TRANSLATION TO C#  
We do not provide in this paper any formal definition 
(either grammar or semantic) of ‘S, however we show how 
the type system of 'S can be full expressed using the type 
system of c#.  

7.1 Overview 
Some features have a direct equivalent in C#, some other 
requires some support code provided by our runtime 
library[29]. Use of such library, however, must be 
integrated with a lot of infrastructural code, that anyway 
may be auto-generated (in a future) using a translation 
tools. 
C# supports variables, properties, events, structs, type 
conversions, exceptions, interfaces and interfaces 
inheritance in the same way ‘s does. C# 4.0[41] also 
supports type inference, and auto-implemented properties. 

7.2 Function 
C# 3.0 does not support optional arguments (will be 
supported in c# 4.0). Alternatively is possible to use 
method overload: 

//s 
function format(format : string = “”) {...} 

 
//c# 
void Format() {  Format(“”) } 
void Format(string format) { ... } 

C# does not support code outside a class context, thus any 
global function must be declared as static into an utility 
class. Extension methods may be used to group these 
functions into a “virtual type”. 

7.3 Context 
Context is emulated with a static class called Context. This 
class manages the context-stack, and allow a quick access 
to local and global context (respectively with Local and 
Global property). A call to Enter method will cause 
specific context to be pushed into the stack, a call to Exit 
to be popped. Any call to enter / exit, must be performed 
inside a try - finally block, to ensure that context will 
be restored properly, in case of exceptions. Is possible to 
enclose any context specifics code in a using block, 
passing a wrapper object (ContextScope). This object will 
invoke automatically Context.Enter (using the context 
passed to the constructor), and then Context.Exit in 
Dipose method.  

//s 
enter MyContext { 
   ... 
} 
 
//c# (a) 
Context.Enter(MyContext.Instance); 
try { 
   ... 
} 
finally { 
   Context.Exit(MyContext.Instance); 
} 
//c# (b) 
using (new ContextScope(MyContext.Instance)) { 
   ... 
} 

All classes representing a context, must implement 
IContext. Since a service can be implemented only inside a 
context, a class implementing a service must also 
implement IContext, so every service interface can extends 
IContext. 

public interface IContext { 
   T Require<T>() where  
             T : class, IContext; 
   void Implement<T>(IContext obj) where 
                  T : class, IContext; 



   IContext Parent { get; set; } 
} 

Calling Implement<T> is possible to assign a T service 
implementation on that context. Implement<T> can has 
different behaviors depending on context type. Every call 
to Implement<T> or Require<T> on Context, will be 
redirect to the current (local) context.   

//’s 
implement ITextWriter use new Console() 
require ITextWriter; 
ITextWriter.WriteLine(“Hello”); 
 
//c# 
Context.Implement<ITextWriter>(new Console()); 
... 
Context.Require<ITextWriter>().WriteLine(“Hello”); 

7.4 Implementation 
Any ‘S-interface-implementation must be performed in a 
separated class, inheriting from Base<T> (where T 

represent host context, the context in which implementation 
is used). Host context is passed on constructor, and then 
stored in a private field (of T type) called _instance. 
Parameter T must be specialized only in classes and in user-
defined contexts, bases must remain generics on T. Base<T> 
implements IContext, redirecting any request to host 
context. Local requirement can be represented using a 
generic-argument constraint on T, so that will be also 
possible have access to all required interfaces using 
_instance without any cast or runtime type-checks.  Not-
local requirements, must be declared in specific fields (of 
the same type of required interface), and initialized calling 
Contex.Require:  

//’s 
public base BaseStream : IStream { 
    require local ISeekable; 
    require IConsole; 
} 
 
//c# 
public class BaseStream<T> : Base<T>, IStream 
                   where T : ISeekable { 
 
    protected readonly IConsole IConsole  
            = Context.Require<IConsole>(); 
 
    public BaseStream(T instance) 
           : base (instance) { } 
}   

Unimplemented interface members must be declared as 
abstract (and therefore, the base class too). If 
implementation handles an interface that uses inheritance, 
all inherited interfaces must be treat as local requirements, 
and declared as constraints of T. Then, such interfaces must 
be implicit implemented, redirecting each method to the 
host class 

//’s 
public interface IStream { function Close(); } 
public interface IInputStream : IStream { ... } 
public base BaseInputStream : IInputStream { ... } 
 
//c# 
public class BaseStream<T> : Base<T>, IInputStream 
                   where T : IStream { ... 
    void IStream.Close() { 
        _instance.Close(); 
    } 
} 

7.5 Class 
Any ‘S-class must inherit from ServiceObject. Every 
implemented interfaces, must be declared into a private 
nested class that inherits from Base<T> or from an existing 
base. T argument must be specialized with the class type. 
For argument must be specialized with the class type. For 
each implemented interfaces, must be declared also a 
specific private field that will hold the implementation 
instance, and a public property with the same name / type 
of implemented interface. This property can be used to 
have a quick access to ambiguous members. Finally the 
class must implement all interfaces, redirecting every call 
to associated implementation instance. All conflicting 
members must be implemented as implicit. 

//’s 
public class File { 
   public implement IStream { 
      public function Close() { ... } 
   } 
 
   public implement IInputStream use 
                    BaseInputStream; 
} 
 
//c# 
public class File : ServiceObject, IInputStream { 
   class Stream : Base<File> : IStream  { 
       public void Close() { ... } 
   } 
   class InputStream : BaseInputStream<File> {  
   } 
 
   Stream _stream = new Stream(this); 
   InputStream _inputStream =  
                      new InputStream(this); 
 
   public IStream IStream { 
      get { return _stream; } 
   } 
   public IInputStream IInputStream { 
      get { return _inputStream; } 
   } 
    
   public void Close() { 
      _stream.Close(); 
   }  
 
   public int ReadByte() { 
      return _inputStream.ReadByte(); 
   } 
} 



Equivalent to “S”, we can have access to implemented 
service, using a flattern or component-driver view: 

File file = new File(); 
file.ReadByte(); 
file.IInputStream.ReadByte(); 
file.Require<IInputStream>().ReadByte(); 
(file as IInputStream).ReadByte(); 

7.6 User defined type 
User defined type can be emulated using structs and 
conversion operators: 

//’s 
public type Percentage : float; 
 
//c# 
public struct Percentage { 
   float _value; 
 
   public Percentage (float value) { 
      _value = value; 
   } 
 
   public static implicit  
                 operator float(Percentage obj) { 
      return obj._value; 
   } 
 
   public static implicit  
                 operator Percentage(float value){ 
      return new Percentage(value); 
   } 
} 

7.7 Implement for, and class extension 
The role of ServiceObject is also manage dynamic 
extension . Each extension will be added to an internal list 
of RuntimeExtension: 

public class RuntimeExtension  { 
   public object Instance; 
   public Type   ExtensionType; 
   public IEnumerable<Type> ImplementedServices 
} 

Upon the first call to Request or Implement methods, will 
be enumerated all suitable extensions for that class, even 
those that are referred to its services. The extension must be 
implement into a class inheriting from Extender<T>, 
(where T is the extension target) and registered to the 
extensions catalog,  held by the Context: 

//’s 
public extend class Stream { 
   public implement ILogger { ... } 
} 
 
//c# 
public class StreamExtender : Extender<Stream>, 
                              ILogger { ... } 
Context.ExtendBy<StreamExtender>(); 

The extension class will be created only after the first 
request to one of its services. After creation, extension class 
will receive the instance of extended class, calling Bind 
method. Extender<T> implements IContext, all requests 
made to an unimplemented service, will be redirected to the 
target object. 

Stream obj = new Stream();                  
ILogger logger = obj.Require<ILogger>();     
IStream stream = logger.Require<IStream>();  

ILogger is implemented through an extension class, 
therefore logger variable is a StreamExtender instance. 
IStream is not implemented by StreamExtender, therefore 
request handling will pass to extended object (Stream), that 
can successfully satisfy it. 

Using extensions methods, is possible to flattern an 
extension interface: 

public static ILoggerForIStreamExtender { 
   static string Log(this IStream stream, 
                     string text) { 
      return stream 
             .Require<ILogger>() 
             .Log(text); 
   } 
} 
var obj = new Stream(); 
obj.Log(); 

7.8 Conditional function 
Conditional function are not easy to emulate, and needs a 
lot of infrastructure. Every conditional function must be 
represented by an interface with two methods: (a) Check, 
used to evaluate the condition, (b) Invoke, used to realize 
the function. Both methods must accept as first argument 
the instance of the type that declare conditional function, 
and then all arguments of target function.  Every condition / 
body must be implemented in a distinct class. Finally, must 
be declared a static class holding all the instances of varies 
implementations, exposing an Invoke method that will 
dispatch the call to the first one that will satisfy the 
condition: 

//’s 
conditional function FormatHex(string : format) 
          : string where (...) { ... } 
conditional function FormatBinary(string : format) 
          : string where (...) { ... } 
//c# 
public interface IFormatFunction { 
   bool Check(int32 target, string format); 
   string Invoke(int32 target, string format); 
} 
 
public static class FormatFunction { 
   static List<IFormatFunction> _list; 
    
   public static void Add(IFormatFunction item) { 
     _list.Add(item); 



   } 
 
   public static string Invoke(this int32 target,  
                        string format) { 
     foreach (var item in _list)  
       if (item.Check(target, format)) 
          return item.Invoke(target, format); 
   } 
} 
 
class FormatHex : IFormatFunction { ... } 
class FormatBinary : IFormatFunction { ... } 
 
public static void Main() { 
   FormatFunction.Add(new FormatHex()); 
   FormatFunction.Add(new FormatBinary()); 
} 

7.9 User defined context 
Any ‘S-user-defined context must inherit from 
UserContext, and have only a single shared instance 
accessible in a static property called Instance (singleton). 
Every implemented services must be declared on 
constructor calling Implement<> method: 

//’s 
public context CommandLine { 
   public implement ITextWriter use Console; 
} 
 
//c# 
public class CommandLine : UserContext { 
   private CommandLine() { 
      Implement<ITextWriter>(new Console()); 
   } 
   public static readonly CommandLine Instance = 
                  new CommandLine(); 
} 

7.10 Member-mapped function 
Single-type member function can be mapped one-to-one 
with extension methods. Else must be declared one 
extension method for each target member, that must appear 
as first argument: 

//’s 
function Print(printer : member IPrinter, 
               document : member IDocument, 
               count : int32) { ... } 
 
//c# 
public static class PrintExtender { 
   static void Print(this IPrinter printer, 
                     IDocument document, 
                     int copyCount) {  
      ...  
   } 
 
   static void Print(this IDocument document, 
                     IPrinter printer, 
                     int copyCount) { 
       Print(printer, document, copyCount); 
   } 
} 

7.11 Custom constructor 
The custom constructors cannot be realized. Alternatively, 
can be used a static functions in target class (or utility class, 
if source code is not available). 

//’s 
public function Origin() : member Point { 
   x = 0; y = 0; 
} 
var p : Point = new Origin(); 
 
//c# 
public class Point { ... 
   public static Point CreateOrigin() { 
      return new Point() { x = 0, y = 0 }; 
   } 
} 
Point p = Point.CreateOrigin(); 

8. CONCLUSION AND FUTURE WORK 
We have shown an alternative way to think and model the 
world of objects, that does not suffer of many of the 
limitations, found in related works. ‘S is unambiguous, and 
provides an essential, but powerful set of composition 
structures. ‘S simplify the components creation, allowing a 
widely reuse mechanism and a better maintenance, without 
loose the advantages of a static and strongly type system. 
Even if without a rigorous and formal translation, we have 
shown how ‘S can be fully mapped in a traditional OO 
language, such as C#. This let we hope that some formal 
properties proof in C#,  will be also valid  ‘S. However,  the 
next step on ‘S development, is write a formal definition. 
Generate c# has several advantages, first of all, have access 
to the huge class library provided by .NET Framework. 
Nevertheless, the first aim of ‘S is to be a decomposable 
system, that can run even in a low-resources environment. 
Thus, we are currently working to an ‘S compiler that can 
generate pure C code. C means portability and speed in 
almost any platform. Due to the synthesis needs and an 
immature developing status, we decided to not discuss 
about it in this paper. As anticipation,  we are 
experimenting in our test, a very effective code, needing a 
minimal runtime environment. This let us to hope that an ‘S 
program will be run also in a embedded system. 
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